K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

áp dụng bất đẳng thức cô si cho 3 số dương 

Với x, y,z>0 : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\frac{y}{z}\frac{z}{x}}=3\sqrt[3]{1}=3.\) :

Dấu '=' xảy ra khi \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Leftrightarrow x=y=z\)

4 tháng 4 2019

\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

\(\Leftrightarrow A^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow2A^2=\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\right)+\left(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)+\left(\frac{x^2y^2}{z^2}+\frac{z^2x^2}{y^2}\right)+12\)

\(\ge2\left(x^2+y^2+z^2\right)+12=6+12=18\)

\(\Rightarrow A\ge3\)

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

NV
6 tháng 3 2020

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(VT=\sum\frac{\sqrt{1+a^6+b^6}}{a^3b^3}\ge\sum\frac{\sqrt{3\sqrt[3]{a^6b^6}}}{a^3b^3}=\sqrt{3}\left(\frac{1}{a^2b^2}+\frac{1}{b^2c^2}+\frac{1}{c^2a^2}\right)\)

\(VT\ge\sqrt{3}.3\sqrt[3]{\frac{1}{a^2b^2.b^2c^2.c^2a^2}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

6 tháng 8 2020

Ta có 

\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)

\(\Rightarrow LHS>2\) ( điều phải chứng minh )

5 tháng 11 2019

Áp dụng bất đẳng thức Cauchy 

\(1+x^3+y^3\ge3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự :
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\frac{3}{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\sqrt{\frac{3}{xz}}\)

Cộng theo vế các bất đẳng thức và thu lại ta được :
\(VT\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\ge3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\)

( Cauchy )

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

6 tháng 11 2019

Cách khác nè bạn

Xét bđt phụ \(a^3+b^3\ge ab\left(a+b\right)\left(a,b>0\right)\)

Thật vậy\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)

Áp dụng ta có \(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{xy}\sqrt{x+y+z}}{xy}=\sqrt{\frac{x+y+z}{xy}}\)

T tự ta có:\(VT\ge\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}+\frac{1}{xy}\right)=\sqrt{x+y+z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\left(xyz=1\left(gt\right)\right)\)

10 tháng 3 2020

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó :

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)\(a^2+b^2+c^2\ge3\)

\(\Leftrightarrow P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\) ( theo BĐT cô-si schwarz )

Ta có :

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

\(\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó :

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)

4 tháng 6 2019

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó 

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)và \(a^2+b^2+c^2\ge3\)

<=>\(P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\)(bất đẳng thức cosi schwaz)

Ta có 

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

                                                        \(\ge3\left(a^2b+b^2c+c^2a\right)\)

=> \(a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó 

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1 => x=y=z=1

28 tháng 9 2016

mk không bít

28 tháng 9 2016

ai đây