K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)....\left(1-\frac{1}{1+2+...+100}\right)\)

\(A=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right).....\left(1-\frac{1}{5050}\right)\)

\(A=\frac{2}{3}.\frac{5}{6}....\frac{5049}{5050}=\frac{4}{6}.\frac{10}{12}...\frac{10098}{10100}\)

\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{99.102}{100.101}\)

\(A=\frac{1.2...98.99}{2.3...99.100}.\frac{4.5...102}{3.4...101}=\frac{1}{100}.\frac{102}{3}\)

Vậy \(A=\frac{102}{300}=\frac{17}{50}\)

27 tháng 4 2019

\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+...+100}\right)\)

\(=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{5050}\right)\)

\(=\frac{2}{3}.\frac{5}{6}.....\frac{5049}{5050}\)

\(=\frac{4}{6}.\frac{10}{12}.....\frac{10098}{10100}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.....\frac{99.102}{100.101}\)

\(=\frac{1.2.3..98.99}{2.3.4..99.100}.\frac{4.5.6...102}{3.4.5...101}\)

\(=\frac{1}{100}.\frac{102}{3}\)

\(=\frac{17}{50}\)

5 tháng 7 2016

\(D=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{100^2}\right).\)

\(D=-\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\frac{4^2-1}{4^2}\cdot...\cdot\frac{100^2-1}{100^2}.\)

\(D=-\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot...\cdot\frac{98\cdot100}{99^2}\cdot\frac{99\cdot101}{100^2}=-\frac{1}{2}\cdot\frac{101}{100}=-\frac{101}{200}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

17 tháng 3 2020

A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- (1/510)^2).....(1/100-(1/20)^2)

A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- 1/100).....(1/100-(1/20)^2)

A=(1/100- 1^2). (1/100-(1/2)^2).....0.....(1/100-(1/20)^2)

A=0

Mình ko biết gõ ngoặc vuông bạn thông cảm nha! Chúc bạn học tốt!!!

27 tháng 2 2016

Ta có : \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)

\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}.\frac{101}{100}\)

\(\frac{3.4.5...100.101}{2.3.4...99.100}\)

\(\frac{101}{2}\)

27 tháng 2 2016

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{101}{100}\)

\(=\frac{101}{2}\)

Ngẩm nghĩ một lát sẽ ra

Nhớ duyệt nha

12 tháng 11 2016

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)

\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)

\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)

\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)

\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)

12 tháng 11 2016

hik như vế sau là a làm theo 16 chứ k fai 2016 hay sao ấy