nếu x:1=y:2 <0 và x2 + y2 = 20.
x + y = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: x2 + y2 + 2 = xy + x + y thì x = y = 1
Bài làm
ta có: x2 + y2 + 2 = xy + x + y
=> 2x2 + 2y2 + 2 = 2xy + 2x + 2y
=> 2x2 + 2y2 + 2 - 2xy - 2x - 2y = 0
(x2 -2xy+y2) + (x2 -2x + 1) + (y2 -2y+1) = 0
(x-y)2 + (x-1)2 + (y-1)2 = 0
=> x - 1 = 0 => x = 1
y-1 = 0 => y = 1
=> x=y=1
xl nhưng mk nghĩ bn sai đề! nếu như đề ko sai thì cho mk xl, mk ko bk lm đề bn ra
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+y^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)
ta co:
x/1=y/2 và x2+y2=20
áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/1=y/2=x2+y2/12+22=20/5=4
=>x/1=4=>x=4x1=4
y/4=4=>y=4x4=16
vậy x+y=16
ta có x:1=y:2=>x/1=y/2
=>x2/1=y2/4=x2+y2/1+4=20/5=4
=>x2/1=5=>x2=4=>x=2 hoặc x=-2
=>y2/4=4=>y2=16=>y=4 hoặc y=-4
mà x:1 =y:2 <0
nên x=-2 và y=-4 thỏa mãn
=>x+y=-2+(-4)=-6