Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Gọi D là điểm chính giữa của cung nhỏ AB. Vẽ bán kính OE vuông góc với AC. Dây DE cắt AB, AC lần lượt tại H và K.
a) Chứng minh hai góc AHK và AKH bằng nhau
b) Gọi I là giao điểm của BE và CD. Chứng minh CEKI nội tiếp và IK//AB
c) Gọi F là giao điểm của AB và CD. Chứng minh AI.FC<IC.AF+IF.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{AHK}=\dfrac{sđ\stackrel\frown{AE}+sđ\stackrel\frown{BD}}{2}\)
và \(\widehat{AKH}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\)
Mặt khác, do D, E lần lượt là điểm chính giữa của cung AB, AC nên \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD};sđ\stackrel\frown{AE}=sđ\stackrel\frown{CE}\). Từ đó \(\Rightarrow\widehat{AHK}=\widehat{AKH}\) hay tam giác AHK cân tại A (đpcm).
b) Hiển nhiên I là tâm đường tròn nội tiếp tam giác ABC \(\Rightarrow\) AI là tia phân giác của \(\widehat{BAC}\) (hay chính là \(\widehat{HAK}\)). Mà theo câu a), tam giác AHK cân tại A nên AI đồng thời là đường cao của tam giác AHK \(\Rightarrow AI\perp HK\) hay \(AI\perp DE\) (đpcm)
c) Ta có \(\widehat{CIE}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{BD}}{2}\)
\(=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\) \(=\widehat{CKE}\) nên tứ giác CEKI nội tiếp
\(\Rightarrow\widehat{HKI}=\widehat{DCE}\) \(=\dfrac{sđ\stackrel\frown{DE}}{2}\)
\(=\dfrac{sđ\stackrel\frown{DA}+sđ\stackrel\frown{AE}}{2}\) \(=\dfrac{sđ\stackrel\frown{BD}+sđ\stackrel\frown{AE}}{2}\) \(=\widehat{AHK}\)
Từ đó dễ dàng suy ra KI//AH hay KI//AB (đpcm)
1.khỏi cần nói nhiều
2. Ta có TG AHB vuông => AD.AB = AH^2 (1)
TG AHC vuông =>AE.AC = AH^2 (2) Từ 1 và 2 => AD.AB=AE.AC
Cái vẽ đường kính OAK là cái hell gì vậy
a)Xét (O) có
ac là dây
e là điểm chính giữa cung ac
=>OE vuông góc AC=> EHC = 90(1)
Có AEB là góc nội tiếp chắn cung AB
=> AEB =90
Mà KC // EB
=>EK vuông góc KC=>EKC=90(2)
Từ (1)(2)=>EKC+EHC=180
Mà 2 góc nằm ở vị trí đối nhau của tứ giác CHEK
=>tứ giác CHEK nội tiếp(đpcm)
b)Gọi giao điểm của KH với AB là I
Có tứ giác CHEK nội tiếp (câu a)
=>EKH=ECH(3)
Có tứ giác AECB nội tiếp
=>ECA=EBA(4)
Từ (3)(4)=>EKH=EBA
Xét 2 tam giác AKI và ABE có
A:chung
AKI=ABE(cmt)
=>AKI\(\sim\)ABE
=>AIK=AEB=90
=>KH\(\perp\)AB(đpcm)