K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

8 tháng 3 2017

abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)

Áp dụng bđt AM-GM ta có:

A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)

\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)

\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)

\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)

Dấu "=" xảy ra khi a = b = c = d = 1

8 tháng 3 2017

cố gắng giúp mình nha

1 tháng 8 2018

Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Thế vào đề ta được

\(xy+4\ge2\left(x+y\right)\)

\(\Leftrightarrow xy-2x+4-2y\ge0\)

\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)

Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)

Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo ) hihi

\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Áp dụng bđt Cosi ta được :

\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)

Mà ab=cd=1

Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)

=> ĐPCM haha

7 tháng 2 2019

Ta có : a2 + b2 \(\ge2ab\)

\(c^2+d^2\ge2cd\)

Do abcd = 1 nên cd =\(\dfrac{1}{ab}\)( dùng \(x+\dfrac{1}{x}\ge\dfrac{1}{2}\))

Ta có :\(a^2+b^2+c^2\ge2\left(ab+cd\right)=2\left(ab+\dfrac{1}{ab}\right)\ge4\)(1)

Mặt khác : a(b+c) +b(c+d)+d(c+a)

=(ab+cd)+(ac+bd)+(bc+ad)

=\(\left(ab+\dfrac{1}{ab}\right)+\left(ac+\dfrac{1}{ac}\right)+\left(bc+\dfrac{1}{bc}\right)\ge2+2+2\)

Vậy \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)