Chứng tỏ rằng: (n-1).(n+2)+12 không chia hết cho 9 với mọi n∈Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+1)(n+2)+12
=(n+1)*n+(n+1)*2+12
=n2+1n+2n+2+12
=n2+(1+2)n+(2+12)
=n2+3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n
Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
cái này mình làm bậy, ko biết có đúng k
chúc bạn học tốt!^_^
nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9
=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n
( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math
Đó mk kiếm đc đó
Tick cho mình
Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải
You and I has the same a life
vì n là số nguyên nên n có 3 dạng:3k; 3k+1;3k+2
*Với n=3k=>n chia hết cho 3=>n-1 và n+2 không chia hết cho 3
=>(n-1)(n+2) không chia hết cho 3. Mà 12 chia hết cho 3 =>(n-1)(n+2)+12 không chia hết cho 3=> tổng đó không chia hết cho 9
*Với n=3k+1=>n-1=3k;n+2=3k+3 chia hết cho 3=>(n-1)(n+2) chia hết cho9. Mà 12 không chia hết cho9=> tổng đó không chia hết cho9.
*Với n=3k+2=>n-1=3k+1; n+2=3k+4 đều không chia hết cho3=>(n-1)(n+2) không chia hết cho3. Mà 12 chia hết cho3 =>tổng đó không chia hết cho3 => tổng đó không chia hết cho9
Vậy ta có đpcm
(n+1)(n+2)=12
=(n+1)*n+(n+1)*2+12
=n2 +1n+2n+2+12
=n2 +(1+2)n+(2+12)
=n2 +3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n-1)(n+2)+12 không chia hết cho 9 với mọi n
vậy mọi n thuộc z thì (n-1)(n+2)+12 không chia hết cho 9
a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.
\(N=\left(n-1\right)\left(n+2\right)+12=n^2+n+10\)
- Với \(n=3k\Rightarrow N=9k^2+3k+9+1⋮̸3\Rightarrow N⋮̸9\)
- Với \(n=3k+1\Rightarrow N=9\left(k^2+k+1\right)+3⋮̸9\)
- Với \(n=3k+2\Rightarrow N=3\left(3k^2+5k+5\right)+1⋮̸3\Rightarrow N⋮̸9\)
Vậy \(N⋮̸9\) \(\forall n\in Z\)
Nhân phân phối phá vào thôi có gì đâu bạn
\(\left(n-1\right)\left(n+2\right)+12=n\left(n+2\right)-1\left(n+2\right)+12\)
\(=n^2+2n-n-2+12=n^2+n+10\)