Rút gọn \(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*****~~~~~~~~~~*****
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)
\(=\sqrt{3}+\sqrt{6}\)
\(=\sqrt{3}\left(1+\sqrt{2}\right)\)
*****~~~~~~~~~~*****
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\sqrt{3}+2+\sqrt{2}\)
(Chúc bạn học tốt nha!)
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\sqrt{3}-2-\sqrt{2}=-2\)
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
Ta có:
\(A=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\cdot\sqrt{\frac{5}{12}-\frac{1}{16}}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\cdot\sqrt{\frac{17}{48}}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{51}}{12}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{\sqrt{17}}{12}\)
\(A=\frac{4\sqrt{3}+2\sqrt{2}+\sqrt{17}}{12}\)
Ta có: \(\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\sqrt{\frac{5}{12}-\frac{\sqrt{6}}{6}}=\sqrt{\frac{5-2\sqrt{6}}{12}}\)
Vì \(5-2\sqrt{6}=3-2\sqrt{3}.\sqrt{2}+2=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2\)\(\Rightarrow5-2\sqrt{6}=\left(\sqrt{3}-\sqrt{2}\right)^2\)
Như vậy: \(\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{1}{2\sqrt{3}}\left(\sqrt{3}-\sqrt{2}\right)\)
Lại có: \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}.\frac{1}{2\sqrt{3}}\left(\sqrt{3}-\sqrt{2}\right)\)
Rút gọn ta được \(A=\frac{\sqrt{3}}{2}\)
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
\(=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\sqrt{3}+\frac{2+\sqrt{3}}{4-3}=2+2\sqrt{3}\)
P/s:Không chắc ạ,em mới lớp 7 thôi!