Cho tam giác MNP vuông tại M, đường cao AH, biết NH=4cm, HP=12cm. Tính MH, MN, MP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
ΔMNP vuông tại M
=>\(NP^2=MN^2+MP^2\)
=>\(NP^2=3^2+4^2=25\)
=>\(NP=\sqrt{25}=5\left(cm\right)\)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH\cdot NP=MN\cdot MP\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=12/5=2,4(cm)
Xét ΔPMN vuông tại M có MH là đường cao
nên \(PH\cdot PN=PM^2\)
=>\(PH\cdot5=4^2=16\)
=>PH=16/5=3,2(cm)
M N P H
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Sửa đề; NP=10cm
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2=10^2-6^2=64\)
=>MP=8(cm)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH\cdot NP=MN\cdot MP\)
=>MH*10=6*8=48
=>MH=4,8(cm)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NH\cdot NP\\PM^2=PH\cdot PN\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}NH=\dfrac{6^2}{10}=3,6\left(cm\right)\\PH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
ta sử dụng hệ thức lượng trong tam giác vuông
\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)
mà MN=3MP/4
they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)
=> MP=\(4\sqrt{15}\)
bài 10: gống cái trên :
tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)
áp dungnj đl pita go ta có :
NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)