K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

A B C x H D H 2 O y O 2

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=BH\cdot CH\)

\(\Leftrightarrow AH^2=9\cdot16=144\)

hay AH=12(cm)

Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(Hai đường chéo)

mà AH=12(cm)

nên DE=12cm

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

17 tháng 1 2018

A B H E K D C

Vì AH ┴ BC và DE ┴ BC

=> AH // DE

Kẻ DK // BC

=> DK = HE [tính chất đoạn chắn]

Cụ thể tính chất đoạn chắn như sau: Nếu hai đường thẳng song song cắt hai đường thẳng song song thì các cặp cạnh tương ứng bằng nhau.

Vì DK // BC mà BC ┴ AH

=> DK ┴ AH

Xét ∆ABH và ∆KDA vuông, ta có:

- AB = AD [gt]

- \(\widehat{BAH}=\widehat{ADK}\) [cùng phụ góc \(\widehat{KAD}\)]

=> ∆ABH = ∆KDA [ch-gn]

=> AH = DK

===> HA = HE

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

19 tháng 1 2019

a)Vì AM là đường trung tuyến ứng với cạnh huyền của △ABC vuông tại A nên AM=MB=MC

⇒△MAB;△MAC cùng cân tại M

⇒MD vừa là đường cao, vừa là đường phân giác trong △MAB.

⇒△BMD=△AMD(c.g.c)⇒DBM^=DAM^=90∘→DB⊥BC

Chứng minh tương tự có: △AME=△CME(c.g.c)→ECM^=MAE^=90∘→CE⊥BC

DB//CE

b) Từ các chứng minh trên ta suy ra: BD=DA;CE=AE→ đpcm

bẠN kham khỏa nhé.