TÍNH
A=(1-1/1+2).(1-1/1+2+3)...(1-1/1+2+3+...+2006)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1`
`a, 1/2 +1/3= 3/6 + 2/6 =5/6`
`d, 1/3 +3/5= 5/15 + 9/15=14/15`
`c,4/5 +1/2= 8/10 + 5/10= 13/10`
`2`
`a,1/2 +1/4=2/4 +1/4=3/4`
`b, 2/3 +1/6 = 4/6+1/6=5/6`
`c, 7/12 +1/2=7/12+ 6/12= 13/12`
`3`
Giải
Cả `2` ngày đi tất cả số quãng đường là :
`1/4 +1/2 =1/4+ 2/4= 3/4 ( quãng đường)`
đ/s...
`@ yL`
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
\(a,\dfrac{1}{2-\sqrt{3}}-3\sqrt{\dfrac{1}{3}}+\sqrt{12}\\ =\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\dfrac{\sqrt{3^2}}{\sqrt{3}}+\sqrt{2^2.3}\\ =\dfrac{2+\sqrt{3}}{4-3}-\sqrt{3}+2\sqrt{3}\\ =2+\sqrt{3}-\sqrt{3}+2\sqrt{3}\\ =2+2\sqrt{3}\)
\(b,\dfrac{2}{1+\sqrt{2}}-\sqrt{9-\sqrt{32}}\\ =\dfrac{2\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\sqrt{9-4\sqrt{2}}\\ =\dfrac{2-2\sqrt{2}}{1-2}-\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\\ =-2+2\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =-2+2\sqrt{2}-\left|2\sqrt{2}-1\right|\\ =-2+2\sqrt{2}-2\sqrt{2}+1\\ =-1\)
- Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{2006^2}\)
- Ta có: \(1=1\)
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(................\)
\(\frac{1}{2006^2}>\frac{1}{2006.2007}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{2006.2007}\)
\(\Leftrightarrow A>1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{2006}-\frac{1}{2007}\right)\)
\(\Leftrightarrow A>1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-...-\frac{1}{2006}+\frac{1}{2007}\)
\(\Leftrightarrow A>1+\frac{1}{2007}=\frac{2008}{2007}\)mà \(\frac{2008}{2007}>1>\frac{1}{2006}\)
\(\Rightarrow A>\frac{1}{2006} \left(ĐPCM\right)\)
^_^ Chúc bạn hok tốt ^_^
Bài 1:
a: \(=\dfrac{4}{8}+\dfrac{2}{8}+\dfrac{1}{8}=\dfrac{7}{8}\)
b: \(=\dfrac{4}{12}+\dfrac{2}{12}+\dfrac{1}{12}=\dfrac{7}{12}\)
B1:
a \(\dfrac{7}{8}\)
b \(\dfrac{7}{12}\)
B2:
a \(\dfrac{3}{7}\)
b \(\dfrac{5}{9}\)
c \(\dfrac{6}{5}\)
B3:
đội còn phải sửa phần quãng đường nữa :\(\dfrac{8}{15}\) phần quãng đường
a: =20/60+12/60-15/60=17/60
b: =7/8-1/4-2/5=5/8-2/5=25/40-16/40=9/40
A=(1-1/1+2).(1-1/1+2+3)...(1-1/1+2+..+2006)
=(0/1+2).(0/1+2+3)...(0/1+2+...+2006)
=0