Cho tam giác ABC nhọn, hai đường cao BM,CN. Điểm P chạy trên cạnh BC. Gọi PK,PL lần lượt là đường kính của các đường tròn (BNP),(CMP). Chứng minh rằng KL luôn đi qua điểm cố định khi P thay đổi ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:
Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.
Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp
Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.
Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)
Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)
=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.
Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)
Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)
Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK
Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).
Hình nếu chị không vẽ được thì hỏi em nhé chị !
Gọi I là trung điểm của BC => I cố định ( vì B,C cố định )
Ta có : AG = 2.OI ( theo bổ đề 7 )
Lại có AM = AH nên AM = 2.OI ( 1 )
Trên tia IO lấy điểm K sao cho OK = 2. OI ( 2 )
=> K cố định ( vì O,I cố định )
Từ ( 1 ) ( 2 ) => AM = KO mà AM// KO
( vì cùng vuông góc với BC ) .
Do đó AMKO là hình bình hành nên KM = OA = R : không đổi
Vậy khi A thay đổi trên cung lớn BC thì điểm M đi động trên đường tròn cố định ( K ; R ) => đpcm
1) Ta có
B I C ^ = 180 0 − I B C ^ − I C B ^ = 180 0 − A B C ^ 2 − A C B ^ 2 = 180 0 − 180 ∘ − B A C ^ 2 = 90 0 + B A C ^ 2 ⇔ B A C ^ = 2 B I C ^ − 180 °
Tương tự B Q C ^ = 90 0 + B P C ^ 2 ⇔ B P C ^ = 2 B Q C ^ − 180 ° .
Tứ giác BPAC nội tiếp, suy ra B A C ^ = B P C ^ ⇒ B Q C ^ = B I C ^ , nên 4 điểm B, I, Q, C thuộc một đường tròn.
2) Gọi đường tròn (B; BI) giao (C; CI) tại K khác I thì K cố định.
Góc I B M ^ là góc ở tâm chắn cung I M ⏜ và I K M ^ là góc nội tiếp chắn cung I M ⏜ , suy ra I K M ^ = 1 2 I B M ^ (1).
Tương tự I K N ^ = 1 2 I C N ^ (2).
Theo câu 1) B, I, Q, C thuộc một đường tròn, suy ra I B M ^ = I B Q ^ = I C Q ^ = I C N ^ (3).
Từ (1), (2) và (3), suy ra I K M ^ = I K N ^ ⇒ K M ≡ K N .
Vậy MN đi qua K cố định.
Nhận xét
Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.
Như vậy: ∠(ACB) = ∠(ADB) = 1v.
a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC
BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)
Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)
Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.
Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))
AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)
Lý luận tương tự, ta có:
BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))
AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)
Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).
b) Ta có ngay O’ là trung điểm BJ
Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ
Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)
c) Ta có (SCD) ∩ (ABCD) = CD.
Gọi M = JK ∩ CD
SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)
SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)
Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.
Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.
d) ΔAIB vuông tại I nên OA = OB = OI
ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).
ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).
Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.
e) Theo chứng minh câu c.
f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).
Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).
Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).
Gọi H là trực tâm của \(\Delta\)ABC. Khi đó H cố định. Giao điểm thứ hai giữa (BNP) và (CMP) là I.
Dễ thấy ^PIL = ^PIK = 900 (2 góc nội tiếp chắn nửa đường tròn). Suy ra K,I,L thẳng hàng
Ta có các tứ giác BNIP và CMIP nội tiếp nên ^MIN = ^NBP + ^MCP = 1800 - ^BAC
Do đó tứ giác AMIN nội tiếp. Kết hợp hợp với tứ giác ANMH nội tiếp (AH).
Ta thu được 5 điểm A,N,H,I,M cùng thuộc 1 đường tròn. Hay tứ giác AIHN nội tiếp
Từ đây ^NIH = ^NAH = ^NCB = 900 - ^NBP = 900 - ^NKP = ^NPK = ^NIK.
Vậy nên K,H,I thẳng hàng. Mà K,I,L cũng thẳng hàng nên K,H,L thẳng hàng.
Suy ra KL luôn đi qua điểm H cố định (đpcm).