tìm x,y sao cho
13x +25y=625
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 13x+7y=369
=> y=\(\frac{369-13x}{7}\)
bạn thử các TH là ra
\(1,4x^2+25y^2-12x-20y+13=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+\left(25y^2-20y+4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5y-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3\\5y=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{2}{5}\end{matrix}\right.\)
1, \(4x^2+25y^2-12x-20y+13=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+\left(25y^2-20y+4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0\\\left(5y-2\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2\ge0\)
Mà \(\left(2x-3\right)^2+\left(5y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(5y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\end{matrix}\right.\)
Vậy...
b, \(13x^2+y^2+4xy-34x-2y+26=0\)
\(\Leftrightarrow\left(4x^2+y^2+1+4xy-4x-2y\right)+9x^2-30x+25=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(3x-5\right)^2=0\)
Vì mỗi nhóm \(\ge0\) mà tổng 2 nhóm trên = 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y-1\right)^2=0\\\left(3y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-7}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy...
\(A=\left(4x^2+25y^2+9-20xy-12x+30y\right)+\left(9x^2+6x+1\right)-2\)
\(A=\left(2x-5y-3\right)^2+\left(3x+1\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(\left\{{}\begin{matrix}x=-\frac{1}{3}\\y=-\frac{11}{15}\end{matrix}\right.\)
\(B=\left(x^2-3x+\frac{9}{4}\right)+\left(y^2-4y+4\right)-\frac{8105}{4}\)
\(B=\left(x-\frac{3}{2}\right)^2+\left(y-2\right)^2-\frac{8105}{4}\ge-\frac{8105}{4}\)
\(B_{min}=-\frac{8105}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{3}{2}\\y=2\end{matrix}\right.\)
a) x 2 + 4x – 12;
b) 1 2 xy 4 – 10 x 3 y – 2 xy 2 - 1 10 y 3 + 2 x 2 + 2 5 y ;
c) x 3 + 27.
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
625=13^0+25^2 suy ra x=0 y=2