K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

+)\(f\left(0\right)=c\)\(f\left(0\right)\)nguyên nên suy ra c nguyên

+) \(f\left(1\right)=a+b+c\);  \(f\left(1\right),c\)nguyên  nên suy ra a+b nguyên

+) \(f\left(2\right)=4a+2b+c\)\(f\left(2\right),c,a+b\)nguyên nên  suy ra 2a nguyên => 2b nguyên

Ta có: \(f\left(5\right)=25a+5b+c=10.2.a+5\left(a+b\right)+c\)

Vì 2a, a+b, c nguyên 

=> \(f\left(5\right)\)nguyên

\(f\left(6\right)=36a+6b+c=15.2.a+6\left(a+b\right)+c\)nguyên

\(f\left(7\right)=49a+7b+c=21.2a+7\left(a+b\right)+c\)nguyên

24 tháng 4 2019

Câu hỏi của nguyễn phạm khánh linh - Toán lớp 7 - Học toán với OnlineMath'

Em tham khảo nhá

10 tháng 11 2016

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

12 tháng 7 2021

¿¿¿¿¿¿¿¿

 

2 tháng 4 2017

ko biết

*f(0) nguyên suy ra 0+0+c=c nguyên

*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên

*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)

Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.

15 tháng 8 2015

a) f(0) = c; f(0) nguyên => c nguyên     (*)

f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)

f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)

Từ (*)(**)(***) => a + b và 4a + 2b nguyên

4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên

nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

b)  f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a 

Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên

f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a 

Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên

f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a 

Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên

19 tháng 3 2018

) f(0) = c; f(0) nguyên => c nguyên     (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

:3

25 tháng 3 2018

Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)

\(\RightarrowĐPCM\)

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)

6 tháng 4 2017

Ta có f(0)=a.02+b.0+c=c

=> c là số nguyên

f(1)=a.12+b.1+c=a+b+c=(a+b)+c

Vì c là số nguyên nên a+b là số nguyên (1)

f(2)=a.22+b.2+c=2(2a+b)+c

=>2.(2a+b) là số nguyên

=> 2a+b là số nguyên (2)

Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên  =>a là số nguyên  => b cũng là số nguyên

Vậy f(x) luôn nhân giá trị nguyên với mọi x

6 tháng 4 2017

Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên

f(1)=a.1\(^{^2}\)+b.1+c=a+b+c

Vì c là số nguyên=>a+b là số nguyên(1)

f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)

Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên

Do a+b là số nguyên, mà a là số nguyên

=>b là số nguyên

Vậy f(x) luôn nhận giá trị nguyên với mọi x