K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

bạn thay x=1 , y=5 vào là được mà

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

=>x-1=0 và y+2=0

=>x=1 và y=-2

Thay x=1 và y=-2 vào X, ta được:

\(X=2\cdot1^5-5\cdot\left(-2\right)^3+2015\)

\(=2017+40=2057\)

a) ( 10x3y - 5x2y2 - 25 x4y3) : ( -5xy)

Ta có : -5xy( -2x2 + xy + 5x3y2) : ( - 5xy)

Vậy , ta được thương là : -2x2 + xy + 5x3y2

b) ( 27x3 - y3) : ( 3x - y)

Ta có : ( 3x - y)( 9x2 + 3xy + y2) : ( 3x - y)

Vậy , ta được thương là : 9x2 + 3xy + y2

C,D chịu

29 tháng 3 2022

hình như cái này là bài hệ pt ông ơi

 

1 tháng 3 2022

Thay x = 1 ; y = -1 ta đc

\(\dfrac{1}{2}.1\left(-1\right)-\dfrac{3}{4}.1\left(-1\right)+1\left(-1\right)=-\dfrac{1}{2}+\dfrac{3}{4}-1=\dfrac{1}{4}-1=-\dfrac{3}{4}\)

6 tháng 7 2019

a) Ta có: 

M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1

M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1

M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1

M = -1

=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y

b) Ta có: S = 1 + x + x2 + x3 + x4 + x5

x.S = x(1 + x + x2 + x3 + x4 + x5)

x.S = x + x2 + x3 + x4 + x5 + x6

xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)

xS - S = x6 - 1 => đpcm

6 tháng 7 2019

a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1

M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x+ (-3).x+ (-3).(-y2) - 1

M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1

M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1

M = 0 + 0 - 1

M = -1

Vậy: biểu thức không phụ thuộc vào x và y

a: \(\left\{{}\begin{matrix}x+2y=3\\4x+5y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+8y=12\\4x+5y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y=6\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3-2y=3-2\cdot2=-1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x+y=5\\2x-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y+2x-y=5+4\\x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=9\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5-3=2\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y-x+5y=5+9=14\\x+2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)