K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Bước 1: Vẽ tam giác ABC.

Bước 2: Vẽ trung điểm của đoạn thẳng BC, đặt tên điểm này là D.

Bước 3: Vẽ trung điểm của đoạn thẳng AB, đặt tên điểm này là E.

Bước 4: Vẽ trung điểm của đoạn thẳng AC, đặt tên điểm này là F.

Bước 5: Vẽ trung tuyến AD.

Bước 6: Vẽ trung tuyến BE.

Bước 7: Vẽ trung tuyến CF.

Bước 8: Vẽ giao điểm của AD; BE và CF, đặt tên giao điểm này là G.

18 tháng 9 2023

a) Xét tam giác ABC, áp dụng định lí tổng 3 góc trong tam giác, ta có:

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \\ \Rightarrow \widehat {ABC} = 180^\circ  - (\widehat {BAC} + \widehat {ACB}) = 180^\circ  - (60^\circ  + 70^\circ ) = 50^\circ \end{array}\)

Bước 1: Vẽ AB = 6 cm

Bước 2:  Vẽ \(\widehat {BAB'} = 60^\circ \)bằng cách:

Chọn công cụ Góc, nháy chuột lần lượt vào các điểm B, A ( theo chiều ngược kim đồng hồ) nhập số đo góc 60

Bước 3: Vẽ \(\widehat {ABA'} = 50^\circ \) bằng cách:

Chọn công cụ Góc, nháy chuột lần lượt vào các điểm A,B ( theo chiều kim đồng hồ) nhập số đo góc 50

Bước 4: Vẽ điểm C là giao điểm của AB’ và BA’

b)

Nháy chuột vào Hồ sơ. Chọn xuất bản. Chọn hiển thị đồ thị dạng hình rồi lưu ảnh dạng png

16 tháng 4 2019

Sử dụng phần mềm Geogebra để

a) Vẽ hình tam giác ABC với trọng tâm G và 3 đường trung tuyến

b) Vẽ tam giác ABC với 3 đường cao và trực tâm H

c) Vẽ tam giác ABC với 3 đường phân giác cắt nhau tại 1 điểm

17 tháng 4 2019

batngo

18 tháng 9 2023

a) Bước 1: Vẽ đoạn thẳng AB = 4 cm

Bước 2: Vẽ đường thẳng qua A và vuông góc với AB bằng cách

Chọn công cụ Đường vuông góc, chọn đường vuông góc, nháy chuột vào điểm A và đoạn AB

Bước 3: Vẽ đoạn AC = 3 cm

Bước 4: Vẽ đoạn thẳng BC

Nháy chuột vào Hồ sơ. Chọn xuất bản. Chọn hiển thị đồ thị dạng hình rồi lưu ảnh dạng png

b) Bên trái màn hình hiển thị độ dài đoạn thẳng BC = 5 cm

1 tháng 9 2018

Bài 1 : Tam giác ABC với trọng tâm G và ba đường trung tuyến là AF, BE, CD.

A B C D E F G

Bài 2 : Tam giác ABC với ba đường cao và trực tâm H.

A B c H

Bài 3 : Tam giác ABC với ba đường phân giác cắt nhau tại \(\text{I}\).

A B C I

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

17 tháng 9 2023

Gọi M, N, P lần lượt là các trung điểm của các đoạn thẳng BC, AC, AB.

Ta có: G là giao điểm của ba đường trung tuyến trong tam giác ABC.

Mà G cũng là giao điểm của ba đường trung trực trong tam giác ABC nên AM, BN, CP là các đường trung trực của tam giác ABC hay \(AM \bot BC;BN \bot AC;CP \bot AB\).

Xét tam giác ABM và tam giác ACM có:

     AM chung;

     \(\widehat {AMB} = \widehat {AMC} (= 90^\circ \))(vì \(AM \bot BC\));

     BM = MC (M là trung điểm của BC).

Vậy \(\Delta ABM = \Delta ACM\)(c.g.c). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có:

     \(\Delta BNA = \Delta BNC\)(c.g.c). Suy ra: AB = BC( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.

17 tháng 9 2023

Ta có: I là giao điểm của ba đường phân giác của tam giác ABC. Đồng thời là giao điểm của ba đường trung trực tam giác ABC nên: \(ID \bot BC;IE \bot AC;IF \bot AB\).

Xét tam giác ADB và tam giác ADC có:

     \(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);

     AD chung;

     \(\widehat {ADB} = \widehat {ADC}(=90^0)\)(vì \(ID \bot BC\)).

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta BEA = \Delta BEC\)(g.c.g). Suy ra: BA = BC ( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.