Cho tam giác ABC có độ dài ba cạnh là a = x2 + x + 1, b = 2x + 1, c = x2 + 1 với x > 1. Tam giác có một góc có số đo bằng:
A. 600
B. 1350
C. 1200
D. 1500
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(2x+1\right)^2+\left(x^2-1\right)^2-\left(x^2+x+1\right)^2}{2\left(2x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{-2x^3-x^2+2x+1}{2\left(2x+1\right)\left(x^2-1\right)}=\dfrac{-\left(2x+1\right)\left(x^2-1\right)}{2\left(2x+1\right)\left(x^2-1\right)}=-\dfrac{1}{2}\)
\(\Rightarrow A=120^0\)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
Có vẻ bạn chép sai đề, do đề bài cho biết tam giác có 1 góc có số đo cố định ko phụ thuộc \(x\) nên ta cho x một giá trị bất kì rồi sử dụng định lý hàm cos để tính 3 góc, giả sử cho \(x=2\Rightarrow\left\{{}\begin{matrix}a=7\\b=5\\c=5\end{matrix}\right.\)
Tam giác này cân tại A nên chỉ cần tính góc A và B
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{50}\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{7}{10}\)
Không có đáp án nào cả