cho p là SNT > 5. CMR : số p^1954^5^7 - 1 chia hết cho 60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)
p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )
=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)
Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3
=> p^2 và q^2 đều chia 3 dư 1
=> p^4 và q^4 đều chia 3 dư 1
=> p^4-q^4 chia hết cho 3 (2)
Mà p,q là snt > 5 => p,q đều ko chia hết cho 5
=> p^2;q^2 chia 5 dư 1 hoặc 4
=> p^4 và q^4 đều chia 5 dư 1
=> p^4-q^4 chia hết cho 5 (3)
Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
Câu hỏi của lx l - Toán lớp 6 - Học toán với OnlineMath
Em xem bài làm ở link này nhé!!
1.
A=5959(1+59)=5959.60 chia hết cho 60
B=798(72+1)=798.50 chia hết cho 5
2.
7( 2a+3b)=14a+21b=13a+a+8b+13b=13(a+b)+(a+8b) chia hết cho 13 vì 2a+3b chia hết cho 13
Suy a+8b chia hết cho 13
NX : 195457 ⋮ 4195457 ⋮ 4
* pp là SNT >5>5 nên p2≡1(mod4)p2≡1(mod4). Do đó N ⋮ 4N ⋮ 4
* pp là SNT >5>5 nên p2≡1(mod3)p2≡1(mod3). Do đó N ⋮ 3N ⋮ 3
* pp là SNT >5>5 nên p4≡1(mod5)p4≡1(mod5). Do đó N ⋮ 5N ⋮ 5
Vậy suy ra N ⋮ (3.4.5)N ⋮ (3.4.5) tức là N ⋮ 60N ⋮ 60.
đầu tiên . CM : \(1954^{5^7}\)= 4m với m nguyên dương
ta sẽ chứng minh bài toán tổng quát p4m - 1 \(⋮\)60 với mọi p nguyên tố > 5 và mọi SND m
thật vậy , p4m - 1 = ( p4 )m - 1m = ( p4 - 1 ) . A = ( p - 1 ) ( p + 1 ) ( p2 + 1 ) . A ( A thuộc N )
do p lẻ nên p-1,p+1 là 2 số chẵn liên tiếp suy ra ( p - 1 ) ( p + 1 ) \(⋮\)4 ( 1 )
Mà ( p - 1 ).p.(p+1 ) \(⋮\)3 . p \(⋮̸\)3 \(\Rightarrow\)( p - 1 ) ( p + 1 ) \(⋮\)3 ( 2 )
do p \(⋮̸\)5 nên p có các dạng \(\mp5k+1,\mp5k+2\)
nếu p = 5k +- 1 \(\Rightarrow\)p2 = \(25k^2\mp10k+1=5n+1\)
nếu p = 5k +- 2 \(\Rightarrow\)p2 = \(25k^2\mp20k+4=5q-1\)
\(\Rightarrow\)p4 - 1 \(⋮\)5 ( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)....