tính
B = \(\frac{1+2+2^2+2^3+.......+2^{2008}}{1-2^{2009}}\)
AI NHANH ĐƯỢC TICK NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là tử số còn b là mẫu số
a=1+2+2^2+...+2^2008
2a=2+2^2+2^3+...+2^2009
2a-a=(2+2^2+...+2^2009)-(1+2+2^2+....+2^2008)
a=2^2009-1
Suy ra,ta có:
B=2^2009-1/1-2^2009=-1
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
\(B=\frac{1+2^2+......+2^{2008}}{1-2^{2009}}\)
Đặt \(C=1+2^2+.......+2^{2008}\)
\(\Rightarrow2C=2+2^2+.....+2^{2009}\)
\(\Rightarrow2C-C=2+2^2+......+2^{2009}-\left(1+2^2+.........+2^{2008}\right)\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}\)
Ồ bạn Phong Trần Nam hơi thiếu rồi
Khi B=(2^2009-1)/(1-2^2009)
=> B = (2^2009-1)/-(2^2009-1)
=> B = -1(Đây mới là kết quả cuối cùng)
Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)
\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)
\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)
\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)
\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)
\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)
\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)
\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)
Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Ta có:
A = 1 + 2 + 22 + ... + 22008
=> 2A = 2 + 22 + ... + 22009
=> 2A - A = 22009 - 1
=> A = 22009 - 1
Ta có : A = 22009 - 1; B = 22009
=> A - B = 22009 - 1 - 22009 = -1
\(A=1+2+2^2+2^3+.....+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+......+2^{2009}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+......+2^{2009}\right)-\left(1+2+2^2+.....+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-1\)
\(\Rightarrow A-B=2^{2009}-1-2^{2009}=-1\)
Đặt tử số là A.
\(2A=2+2^2+2^3+...+2^{2009}\)
\(2A-A=A=2^{2009}-1\)
\(B=\frac{2^{2009}-1}{1-2^{2009}}=-1\)