K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

Do AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\) Tam giác ABC vuông tại C

Mặt khác \(OA=OC=R\Rightarrow\Delta OAC\) cân tại O (1)

\(\widehat{AOC}=180^0-\widehat{BOC}=60^0\) (2)

(1);(2) \(\Rightarrow\Delta AOC\) đều \(\Rightarrow AC=OA=R\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2-AC^2}=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

NV
20 tháng 8 2021

undefined

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2\)=\(AB^2+AC^2\)

\(BC^2\)= 52 + 122 =169

hay BC = 13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay R = \(\dfrac{BC}{2}\)= \(\dfrac{13}{2}\) =6.5(cm)

29 tháng 12 2023

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+5^2=10^2\)

=>\(AC^2=75\)

=>\(AC=\sqrt{75}=5\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=5\cdot5\sqrt{3}=25\sqrt{3}\)

=>\(AH=\dfrac{25\sqrt{3}}{10}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

22 tháng 12 2023

loading... Cách 1: Dùng tính chất đường trung tuyến AO bằng nửa cạnh BC

Ta có:

OA = OB = OC = bán kính

⇒ OA = BC : 2

⇒ ∆ABC vuông tại A

⇒ ∠BAC = 90⁰

Cách 2: Dùng định lí

Do ∆ABC nội tiếp (O) đường kính BC

⇒ ∆ABC vuông tại A

⇒ ∠BAC = 90⁰

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$