Cho 2 góc kề bù\(\widehat{xOy}vs\widehat{yOz}\).Gọi Om, On lần lượt là tia phân giác của 2 góc đó. Tính \(\widehat{mOn}?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Om là phân giác góc xOy
=> góc mOy = 1/2 góc xOy
On là phân giác góc yOz
=> góc yOn = 1/2 góc yoz
suy ra: góc mOy + góc yOn = 1/2 (góc xOy + góc yOz)
<=> góc mOn = 1/2.1800 = 900 (do góc xOy và góc yOz kề bù)
Om phân giác xoy => moy=1/2xoy hay xoy=2moy
tương tự => noy=1/2yoz hay yoz=2noy
Lại có:
xoy+yoz=180
=>2moy +2noy=180
=>moy+noy=90 hay mon =90
Ta có góc xoy+yoz=180 độ (kề bù)
=> 1/2 góc xoy+1/2 góc yoz = 90 độ
=> góc yom + góc yon=90 độ
=> góc mon =90 độ hay om vuông góc với on
a) Ta có \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù (theo đề)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)
Hay \(50^0+\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=130^0\)
b) Góc mOn ..... bn tự lm ik
Ta có: Om là tia phân giác của \(\widehat{xOy}\) (theo đề)
\(\Rightarrow\)\(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}=\frac{50^0}{2}=25^0\)
Lại có : On là tia phân giác của \(\widehat{yOz}\) (theo đề)
\(\Rightarrow\)\(\widehat{yOn}=\widehat{zOn}=\frac{\widehat{yOz}}{2}=\frac{130^0}{2}=65^0\)
Ta lại có: \(\widehat{mOy} + \widehat{nOy} = 25^0 + 65^0 = 90^0\)
Do đó 2 góc mOy và nOy phụ nhau.
Cái này mình bt làm nek
Vì Om là tia phân giác của\(\widehat{xOy}\)
\(\Rightarrow\widehat{xOm}=\widehat{mOy}=\frac{\widehat{xoy}}{2}\)
Vì On là tia phân giác của \(\widehat{yOz}\)
\(\Rightarrow\widehat{zOn}=\widehat{yOn}=\frac{\widehat{yOz}}{2}\)
Vì Oy nằm giữa On và Om
Nên\(\widehat{mOy}+\widehat{nOy}=\widehat{mOn}=\frac{\widehat{xOz}}{2}\)
Hay\(\frac{\widehat{xOy}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}}{2}\)
\(\Rightarrow\widehat{mOn}=\frac{180^o}{2}=90^o\)
vì góc xOy và yOz là 2 góc kề bù
\(\Rightarrow xoy+yoz=180\)
tia om là tiaphaan giác của góc xoy
\(\Rightarrow moy=mox=xoy:2\)
tia on là tia phân giác của góc yoz
\(\Rightarrow noy=noz=yoz:2\)
\(\downarrow\)
noy:2+moy:2=180