Tìm y:
2/3x=1/2y=2/z và 3x+2y+z=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
Lời giải:
Áp dụng TCDTSBN:
$\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}=\frac{2+1+2}{3x+2y+z}=\frac{5}{1}=5$
$\Rightarrow 3x=\frac{2}{5}; 2y=\frac{1}{5}; z=\frac{2}{5}$
$\Rightarrow x=\frac{2}{15}; y=\frac{1}{10}; z=\frac{2}{5}$
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24
Tham khảo
Khai triển Abel ta có:
\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)
\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)
\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)
\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)
Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)