Cho pt:
\(x^2-\left(m+1\right)x+2m-3=0\)0
a) Cmr: phương trình luôn có nghiệm phân biệt với mọi m
b) Tìm giá trị m để phương trình trên có nghiệm là 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
1.
Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)
\(f\left(x\right)\) xác định và liên tục trên R
\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)
\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)
\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)
\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)
\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)
\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)
Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt
2.
Đặt \(t=g\left(x\right)=x.cosx\)
\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)
\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)
Hàm \(f\left(t\right)\) xác định và liên tục trên R
\(f\left(1\right)=1>0\)
\(f\left(-2\right)=-8< 0\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m
+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12\)
\(=m^2-6m+12\)
\(=\left(m-3\right)^2+3>0\)
=>dpcm
+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0
ta được: 32-(m+1).3+2m-3=0
<=>9-3m-3+2m-3=0
<=>-m+3=0
<=>m=3
Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0 có 1 nghiệm bằng 3
\(x^2-\left(m+1\right)x+2m-3=0\)
+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.
Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được :
\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)
Vậy m = 3
a, - Xét phương trình (1) có : \(\Delta^,=b^{,2}-ac\)
\(=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5\)
\(=m^2-4m+6=m^2-4m+4+2=\left(m-2\right)^2+2\)
- Thấy \(\Delta^,\ge2>0\) => ĐPCM .
b,Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(TH_1:x_1=0\Rightarrow m=\dfrac{5}{2}\)
- Thay m và x1 vào một PT ta được : x2 = -3 ( L )
=> Không tồn tại x1 = 0 để nghiệm còn lại lớn hơn 0 .
\(TH_2:x_1< 0< x_2\)
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
Vậy ...
a: Δ=(2m-1)^2-4(m-1)
=4m^2-4m+1-4m+4
=4m^2-8m+5
=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m
=>PT luôn có 2 nghiệm với mọi m
b: x1^3+x2^3=2m^2-m
=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m
=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m
=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0
=>8m^3-14m^2+7m-1-6m^2+9m-3=0
=>8m^3-20m^2+16m-4=0
=>m=1/2 hoặc m=1
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3