K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

\(a.\)Ta có:

\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)

         \(=2x^2-3x-5x^2-4x+4x^2+4x+1\) 

        \(=x^2-3x+1\)

\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:

\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)

                          \(\Leftrightarrow a.1+\left(-b\right)=0+2\)

                          \(\Leftrightarrow a-b=2\)                                             \(\left(1\right)\)

Tại:  \(x=2\)thì \(g\left(2\right)=0\)nên:

\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)

                      \(\Leftrightarrow4a+2b=2\)                                            \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)

                  

22 tháng 8 2019

Lỡ nhấn nút gửi, làm tiếp nhé:

\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)

Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)

\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)

Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)

Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)

\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)

Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)

Chắc vậy !!!

6 tháng 6 2019

a) \(f\left(x\right)=8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)

6 tháng 6 2019

b) \(g\left(x\right)=5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{5};1\right\}\)

a: f(1)=0

=>a+b+c=0(luôn đúng)

b: f(x)=0

=>5x^2-6x+1=0

=>(x-1)(5x-1)=0

=>x=1/5 hoặc x=1

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

Ta có f(x)=ax^2+5x-6                             (1)

Thay x=-2 vào (1) ta đc

f(-2)=a(-2)^2+5(-2)-6

       = 4a-10-6

       =4a-16

Mà x=-2 là 1 nghiệm của f(x)

suy ra 4a-16=0

           4a=16

           a=4

Vậy a=4

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4