so sánh \(\frac{2016}{2017}+\frac{2017}{2018}\)với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = \(\frac{2016+2017}{2017+2018}=\frac{2016}{2017+2018}+\frac{2017}{2017+2018}\)
Ta có: \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2016}>\frac{2017}{2017+2018}\)
Nên M > N
Ta thấy : \(\frac{2016+2017}{2017+2018}\)=\(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Vì : \(\frac{2016}{2017}\)>\(\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}\)>\(\frac{2017}{2017+2018}\)
Cộng vế với vế ta được : \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)> \(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Hay M > N
Vậy M > N
Chúc bạn hok tốt !!
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!
Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)
Cộng vế theo vế, ta có :
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Do : \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016}{2017+2018}+\frac{2017}{2017+2018}=\frac{2016+2017}{2017+2018}\)
Vậy : \(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
Ta có:
\(\frac{2016}{2017}>\frac{2017}{2018}\Rightarrow A>\frac{2016}{2018}+\frac{2017}{2018}\Rightarrow A>\frac{2016+2017}{2018}\)
\(\frac{2016+2017}{2017+2018}=\frac{2016+2017}{4035}\)
Vì:\(\frac{2016+2017}{2018}>\frac{2016+2017}{4015}\)
Nên:\(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
vì\(\frac{2016}{2017}< 1\)
và\(\frac{2017}{2018}< 1\)
cho nên\(\frac{2016}{2017}+\frac{2017}{2018}< 1\)