K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

\(\frac{\left(x^2-8\right)}{92}-1+\frac{\left(x^2-7\right)}{93}-1=\frac{\left(x^2-6\right)}{94}-1+\frac{\left(x^2-5\right)}{95}-1\)

\(\Rightarrow\frac{\left(x^2-100\right)}{92}+\frac{\left(x^2-100\right)}{93}-\frac{\left(x^2-100\right)}{94}-\frac{\left(x^2-100\right)}{95}=0\)

\(\Rightarrow\left(x^2-100\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)

\(\Rightarrow x^2-100=0\)(vi \(\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)\ne0\)

\(\Rightarrow x=\pm10\)

21 tháng 4 2019

\(\frac{x^2-8}{92}+\frac{x^2-7}{93}=\frac{x^2-6}{94}+\frac{x^2-5}{95}\)

\(\Leftrightarrow\left(\frac{x^2-8}{92}-1\right)+\left(\frac{x^2-7}{93}-1\right)=\left(\frac{x^2-6}{94}-1\right)+\left(\frac{x^2-5}{95}-1\right)\)

\(\Leftrightarrow\frac{x^2-100}{92}+\frac{x^2-100}{93}-\frac{x^2-100}{94}-\frac{x^2-100}{95}=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-10\end{cases}}}\)

V...

=>\(\left(\dfrac{x^2-8}{2008}-1\right)+\left(\dfrac{x^2-7}{2009}-1\right)=\left(\dfrac{x^2-6}{2010}-1\right)+\left(\dfrac{x^2-5}{2011}-1\right)\)

=>x^2-2016=0

=>x^2=2016

=>\(x=\pm\sqrt{2016}\)

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$

5 tháng 3 2022

\(0,1x^2-0,6x-0,8=0\\ \Leftrightarrow x^2-6x-8=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=6\\x_1.x_2=-8\end{matrix}\right.\)

9 tháng 2 2021

Ta có : \(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}+\dfrac{2x+95}{5}\)

\(\Leftrightarrow\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+93}{7}-\dfrac{2x+94}{6}-\dfrac{2x+95}{5}=0\)

\(\Leftrightarrow\dfrac{2x+5}{95}+1+\dfrac{2x+6}{94}+1+\dfrac{2x+7}{93}+1-\dfrac{2x+93}{7}-1-\dfrac{2x+94}{6}-1-\dfrac{2x+95}{5}-1=0\)

\(\Leftrightarrow\dfrac{2x+100}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+100}{7}-\dfrac{2x+100}{6}-\dfrac{2x+100}{5}=0\)

\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\right)=0\)

Thấy : \(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\ne0\)

\(\Rightarrow2x+100=0\)

\(\Leftrightarrow x=-50\)

Vậy ...

 

 

 

 

 

 

9 tháng 2 2021

 -1 ở đâu vậy bạn,giải thích hộ mik đc ko

 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

=>1/x+2-1/x+6=1/8

=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>x^2+8x+12=32

=>x^2+8x-20=0

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

7 tháng 3 2023

1. A

2. D

3. A

4. A

9 tháng 12 2021

PT có 2 nghiệm \(\Leftrightarrow\Delta'=\left(k-2\right)^2-\left(-2k-5\right)\ge0\)

\(\Leftrightarrow k^2-4k+4+2k+10\ge0\\ \Leftrightarrow k^2-2k+14\ge0\\ \Leftrightarrow k\in R\)

Vậy PT luôn có 2 nghiệm

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\left(1\right)\\x_1x_2=-2k-5\left(2\right)\end{matrix}\right.\)

Lại có \(2x_1-x_2=7\left(3\right)\)

\(\left(1\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\\2x_1-x_2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2k+3\\x_2=2x_1-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2k+3}{2}\\x_2=\dfrac{4k+6}{2}-7=\dfrac{4k-8}{2}=2k-4\end{matrix}\right.\)

Thay vào \(\left(2\right)\Leftrightarrow\dfrac{\left(2k+3\right)\left(2k-4\right)}{2}=-2k-5\)

\(\Leftrightarrow\left(2k+3\right)\left(k-2\right)=-2k-5\\ \Leftrightarrow2k^2-k-6+2k+5=0\\ \Leftrightarrow2k^2+k-1=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-1\end{matrix}\right.\)

13 tháng 3 2017

Chọn A