Giai phương trình
(x2 - 8 / 92 ) + (x2- 7/ 93) = (x2- 6/ 94 ) +(x2- 5 / 95 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(\left(\dfrac{x^2-8}{2008}-1\right)+\left(\dfrac{x^2-7}{2009}-1\right)=\left(\dfrac{x^2-6}{2010}-1\right)+\left(\dfrac{x^2-5}{2011}-1\right)\)
=>x^2-2016=0
=>x^2=2016
=>\(x=\pm\sqrt{2016}\)
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
\(0,1x^2-0,6x-0,8=0\\ \Leftrightarrow x^2-6x-8=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=6\\x_1.x_2=-8\end{matrix}\right.\)
Ta có : \(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}+\dfrac{2x+95}{5}\)
\(\Leftrightarrow\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+93}{7}-\dfrac{2x+94}{6}-\dfrac{2x+95}{5}=0\)
\(\Leftrightarrow\dfrac{2x+5}{95}+1+\dfrac{2x+6}{94}+1+\dfrac{2x+7}{93}+1-\dfrac{2x+93}{7}-1-\dfrac{2x+94}{6}-1-\dfrac{2x+95}{5}-1=0\)
\(\Leftrightarrow\dfrac{2x+100}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+100}{7}-\dfrac{2x+100}{6}-\dfrac{2x+100}{5}=0\)
\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\right)=0\)
Thấy : \(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\ne0\)
\(\Rightarrow2x+100=0\)
\(\Leftrightarrow x=-50\)
Vậy ...
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
=>1/x+2-1/x+6=1/8
=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
=>x^2+8x+12=32
=>x^2+8x-20=0
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
PT có 2 nghiệm \(\Leftrightarrow\Delta'=\left(k-2\right)^2-\left(-2k-5\right)\ge0\)
\(\Leftrightarrow k^2-4k+4+2k+10\ge0\\ \Leftrightarrow k^2-2k+14\ge0\\ \Leftrightarrow k\in R\)
Vậy PT luôn có 2 nghiệm
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\left(1\right)\\x_1x_2=-2k-5\left(2\right)\end{matrix}\right.\)
Lại có \(2x_1-x_2=7\left(3\right)\)
\(\left(1\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\\2x_1-x_2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2k+3\\x_2=2x_1-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2k+3}{2}\\x_2=\dfrac{4k+6}{2}-7=\dfrac{4k-8}{2}=2k-4\end{matrix}\right.\)
Thay vào \(\left(2\right)\Leftrightarrow\dfrac{\left(2k+3\right)\left(2k-4\right)}{2}=-2k-5\)
\(\Leftrightarrow\left(2k+3\right)\left(k-2\right)=-2k-5\\ \Leftrightarrow2k^2-k-6+2k+5=0\\ \Leftrightarrow2k^2+k-1=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-1\end{matrix}\right.\)
\(\frac{\left(x^2-8\right)}{92}-1+\frac{\left(x^2-7\right)}{93}-1=\frac{\left(x^2-6\right)}{94}-1+\frac{\left(x^2-5\right)}{95}-1\)
\(\Rightarrow\frac{\left(x^2-100\right)}{92}+\frac{\left(x^2-100\right)}{93}-\frac{\left(x^2-100\right)}{94}-\frac{\left(x^2-100\right)}{95}=0\)
\(\Rightarrow\left(x^2-100\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)
\(\Rightarrow x^2-100=0\)(vi \(\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)\ne0\)
\(\Rightarrow x=\pm10\)
\(\frac{x^2-8}{92}+\frac{x^2-7}{93}=\frac{x^2-6}{94}+\frac{x^2-5}{95}\)
\(\Leftrightarrow\left(\frac{x^2-8}{92}-1\right)+\left(\frac{x^2-7}{93}-1\right)=\left(\frac{x^2-6}{94}-1\right)+\left(\frac{x^2-5}{95}-1\right)\)
\(\Leftrightarrow\frac{x^2-100}{92}+\frac{x^2-100}{93}-\frac{x^2-100}{94}-\frac{x^2-100}{95}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-10\end{cases}}}\)
V...