K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta có: \(VT-VP=\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)(đúng với \(xy\ge1\))

Đẳng thức xảy ra khi a = b = 1

NV
22 tháng 4 2019

Biến đổi tương đương, do mọi hạng tử đều dương nên:

\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)

\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)

1 tháng 1 2018

Cái này biến đổi tương đương nhé, t có mỗi cách đó !

ta có BĐT cần chứng minh 

\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)

\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)

\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)

bđt này luôn đúng với \(x,y\ge1\)

dấu = xảy ra <=> x=y >=1

^_^

chọn của vũ tiền châu nhé

nhớ đêý

cảm ơn 

t i c k nhé

kí tên hà ơi quá khắm :vvv

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

a)

Coi đây là pt bậc hai ẩn $y$. Để pt có nghiệm nguyên thì:

$\Delta'=x^2+3x+2=t^2$ với $t\in\mathbb{Z}$)

$\Rightarrow 4x^2+12x+8=4t^2$

$\Leftrightarrow (2x+3)^2-1=(2t)^2$

$\Leftrightarrow 1=(2x+3-2t)(2x+3+2t)$

Xét 2 TH sau:

TH1: $2x+3-2t=2x+3+2t=1$

$\Rightarrow x=-1; y=1$

TH2: $2x+3-2t=2x+3+2t=-1$

$\Rightarrow x=-2; y=2$

Vậy.......

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

b) Ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow \frac{x^2+y^2+2}{x^2+y^2+x^2y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow (x^2+y^2+2)(xy+1)\geq 2(x^2+y^2+x^2y^2+1)\)

\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2+y^2-2xy)\geq 0\)

$\Leftrightarrow (x-y)^2(xy-1)\geq 0$

Luôn đúng với mọi $xy\geq 1$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y$ hoặc $xy=1$

NV
17 tháng 5 2020

a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)

b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)

\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)

\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)

\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)

\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)

\(\Rightarrow\left(x;y\right)=...\)

\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn

17 tháng 5 2020

tks nha

26 tháng 9 2020

Check lại đề đi bạn ơi! Chứng minh \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) thì được

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Biến đổi tương đương:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{1+xy}\)

\(\Leftrightarrow \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow (xy+1)(x^2+y^2+2)\geq 2(x^2+1)(y^2+1)\)

\(\Leftrightarrow xy(x^2+y^2)+2xy+x^2+y^2+2\geq 2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow xy(x^2+y^2)+2xy-2x^2y^2-x^2-y^2\geq 0\)

\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2-2xy+y^2)\geq 0\)

\(\Leftrightarrow xy(x-y)^2-(x-y)^2\geq 0\leftrightarrow (xy-1)(x-y)^2\geq 0\)

BĐT trên luôn đúng với mọi $x\geq 1, y\geq 1$. Do đó ta có đpcm.

Dấu "=" xảy ra khi $xy=1$ hoặc $x=y\geq 1$

16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/910328.html

29 tháng 4 2019

cảm ơn bạn nhiều

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

$xy+yz+xz=3xyz$

$\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$

Đặt $\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)$ thì bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=3$. CMR $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$

---------------------------------

Thật vậy:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}$

$\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}$

$\frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}$

Cộng theo vế và thu gọn: $\sum \frac{1}{a^2}\geq \sum \frac{1}{ab}=\frac{a+b+c}{abc}=\frac{3}{abc}$

Ta cần chứng minh $\frac{3}{abc}\geq a^2+b^2+c^2$ thì bài toán sẽ được chứng minh.

$\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)$

Theo hệ quả BĐT AM-GM: $3abc=abc(a+b+c)\leq \frac{(ab+bc+ac)^2}{3}$

$\Rightarrow abc\leq \frac{(ab+bc+ac)^2}{9}$

$\Rightarrow abc(a^2+b^2+c^2)\leq \frac{(a^2+b^2+c^2)(ab+bc+ac)^2}{9}$

Mà:

$(a^2+b^2+c^2)(ab+bc+ac)^2\leq \left(\frac{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}{3}\right)^3=\frac{(a+b+c)^6}{27}=27$ theo AM-GM

Do đó: $abc(a^2+b^2+c^2)\leq \frac{27}{9}=3$. BĐT $(*)$ được CM

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$ hay $x=y=z=1$