K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

a, Ta có \(\left(x+y\right)^2=\left(x+y\right)\left(x+y\right)=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2+2xy=49\)

\(\Rightarrow x^2+y^2=49-2\left(-18\right)\)\(=85\)

b, \(\left(x-y\right)^2=\left(x-y\right)\left(x-y\right)=x^2-2xy+y^2\)\(=\left(x^2+y^2\right)-2\left(-18\right)\)\(=85+36=121\)

\(\Leftrightarrow\left(x-y\right)^2=121\Rightarrow x-y=11\)

Ta có \(\hept{\begin{cases}x-y=11\\x+y=7\end{cases}}\)

Trừ xuống : \(-2y=4\Rightarrow x=-2\)

Mà \(x+y=7\Rightarrow x-2=7\Rightarrow x=9\)

Vậy \(x=9\)\(y=-2\)

21 tháng 4 2019

bạn Thùy Linh ơi sai đề rồi bạn. Dù sao cũng cảm ơn nha!

17 tháng 7 2023

a) \(\left(x-y\right)^2=x^2-2xy+y^2=x^2+y^2-2xy\)

\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy=7^2+2.60\)

\(\Rightarrow x^2+y^2=169\)

\(\left(x+y\right)^2=x^2+y^2+2xy=169+2.60\)

\(\Rightarrow\left(x+y\right)^2=289=17^2\)

\(\Rightarrow x+y=17\)

\(x^2-y^2=\left(x+y\right)\left(x-y\right)=17.7=119\)

b) \(\left(x^2+y^2\right)^2=\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2=x^4+y^4+2\left(xy\right)^2\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=169^2-2.60^2\)

\(\Rightarrow x^4+y^4=28561-7200=21361\)

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

30 tháng 8 2021

Tham khảo: https://hoc24.vn/cau-hoi/tim-hai-so-huu-ti-x-va-y-sao-cho-x-y-xy-x-y.143830378546

30 tháng 8 2021

nice