so sanh:
a)1990^10+1990^9 và 1991^10
b)202^303 và 303^202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
Câu 1.9920và 999910
=(992)10=980110
Vậy 980110<999910 suy ra 9920<999910
Câu 2. 3500và 7300
3500=(35)100=243100
7300=(73)100=343100
Vậy 243100<343100 => 3500<7300
a, Ta có:
2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
b, Ta có:
202303 = (2023)101 = 8242408101
303202 = (3032)101 = 91809101
Vì 8242408101 > 91809101 nên 202303 > 303202
c, Ta có:
199010 + 19909 = 19909(1990 + 1) = 19909.1991
Vì 19909.1991 < 199110 nên 199010 + 19909 < 199110
a) \(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Ta thấy \(99.100>99.99\Rightarrow\left(99.99\right)^{10}< \left(99.101\right)^{10}\Leftrightarrow99^{20}< 9999^{10}\)
b) Ta có : \(202^{303}=\left[\left(2.101\right)^3\right]^{101}=8^{101}.101^{303}\)
\(303^{202}=\left[\left(3.101\right)^2\right]^{101}=9^{101}.101^{202}\)
Tự làm tiếp nha bn
a)9920 và 99910
Ta có:ƯCLN(20;10)=10
\(\Rightarrow99^{20}=\left(99^2\right)^{10}\)
\(9999^{10}=\left(9999^1\right)^{10}\)
\(99^2=9801< 9999\)
\(\Rightarrow99^{20}< 9999^{10}\)
f: 11^1979<11^1980=1331^660
37^1320=(37^2)^660=1369^660
1331<1369
=>1331^660<1369^660
=>11^1980<37^1320
=>11^1979<37^1320
g: 10^10=2^10*5^10
48*50^5=2^4*3*2^5*5^10=2^9*3*5^10
2^10<2^9*3
=>2^10*5^10<2^9*3*5^10
=>10^10<48*50^5
\(202^{303}=\left(101.2\right)^{303}=101^{606}\)
\(303^{202}=\left(101.3\right)^{202}=101^{606}\)
Vì 101606 = 101606 nên 202303 = 303202