K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

a,xét t.giác ABD và t.giác EBD có:

          AB=EB(gt)

         \(\widehat{ABD}\)=\(\widehat{EBD}\)(gt)

         BD cạnh chung

=>t.giác ABD=t.giác EBD(c.g.c)

=> AD=DE(2 cạnh tương ứng)

b,vì t.giác ABD=t.giác EBD=>\(\widehat{DAB}\)=\(\widehat{DEB}\)mà \(\widehat{DAB}\)=90 độ

=>\(\widehat{DEB}\)=90 độ

xét 2 t.giác vuông IAD và CED có:

           AD=DE(theo câu a)

          \(\widehat{ADI}\)=\(\widehat{EDC}\)(vì đối đỉnh)

=> t.giác IAD=t.giác CED(cạnh góc vuông-góc nhọn kề)

=>DI=DC(2 cạnh tương ứng)

=>t.giác DIC cân

c,gọi O là giao điểm của CI và BD

 xét t.giác OBC và t.giác OBI có:

            BO cạnh chung

            \(\widehat{OBI}\)=\(\widehat{OBC}\)(gt)

vì AB=EB mà AI=EC nên IB=CB

  =>t.giác OBC=t.giác OBI(c.g.c)

=>\(\widehat{BOC}\)=\(\widehat{BOI}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{BOC}\)=\(\widehat{BOI}\)=90 độ

=> BD vuông góc với CI

A B C D E

20 tháng 4 2019

hình vẽ của mik vẽ thiếu,bn tự vẽ lại nha

14 tháng 4 2018

hình bạn tự vẽ nha

a)

Xét tam giác ABD và tam giác EBD có:

BA=BE(g/t)

góc ABD= góc EBD(g/t)

cạnh BD chung

=>tam giác ABD = tam giác EBD (c.g.c)

=>AD=ED(2 cạnh tương ứng)

b)Vì tam giác ABD = tam giác EBD (cmt)

=>góc BAD=góc BED=90 độ(2 góc tương ứng)

Xet tam giác ADI và tam giác EDC có

góc IAD=góc CED(=90 độ)

AD=ED(cmt)

góc ADI=góc EDC(đối đỉnh)

=>tam giác ADI = tam giác EDC (g.c.g)
=>DI=DC(2 cạnh tương ứng)

=>tam giác DIC cân tại D

c)CÁCH 1 :vì tam giác ADI = tam giác EDC(cmt)

AI=EC(2 cạnh tương ứng)

=>BA+AI=BE+EC

hay BI=BC

=>B thuộc đường trung trực của tam giác BIC

=>BD vuông góc với CI

CÁCH 2(cách này dài hơn cách 1 nha) kéo dài BD cắt AC tại E

vì tam giác ADI = tam giác EDC(cmt)

AI=EC(2 cạnh tương ứng)

=>BA+AI=BE+EC

hay BI=BC

xét tam giác IBE và tam giác CBE có

BI=BC(cmt)

góc IBE=góc CBE(=90 độ)

cạnh BE chung

=> tam giác IBE và tam giác CBE(c.g.c)

=>góc BEI=góc BEC(2 góc tongw ứng)

mà góc BEI+góc BEC=180 độ

=>góc BEI=góc BEC=180 độ:2=90 độ

=>BE vuông góc cới CI hay BD vuông góc với CI

a: Xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔABE=ΔDBE

b: Ta có: ΔABE=ΔDBE

=>BA=BD và EA=ED

Ta có: BA=BD

=>B nằm trên đường trung trực của AD(1)

Ta có: EA=ED

=>E nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BE là đường trung trực của AD

=>BE\(\perp\)AD
c: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có

EA=ED

\(\widehat{AEF}=\widehat{DEC}\)(hai góc đối đỉnh)

Do đó: ΔEAF=ΔEDC

=>EF=EC

=>ΔEFC cân tại E

10 tháng 2 2020

hack não

24 tháng 6 2020

hack não

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

b: ta có: ΔBAE=ΔBDE

nên BA=BD và EA=ED
=>BE là đường trung trực của AD

hay BE\(\perp\)AD

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=ED

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

c: Ta có: ΔADF=ΔEDC

nên DF=DC và AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BC=BF

hay B nằm trên đường trung trực của CF(1)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD\(\perp\)CF

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0