K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

méo bit

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

13 tháng 3 2020

a) M = \(\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}-\frac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)}+\frac{x^2-1}{\sqrt{x}\left(x-1\right)}\)(x>0;x khác 1)

\(\frac{x^2-\sqrt{x}+x\sqrt{x}-1-x^2-\sqrt{x}+x\sqrt{x}+1+x^2-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{x^2+2x\sqrt{x}-2\sqrt{x}-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{2\sqrt{x}\left(x-1\right)+\left(x-1\right)\left(x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(x-1\right)\left(2\sqrt{x}+x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b) M = 9/2

<=> \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\frac{9}{2}\)

<=> \(2x+4\sqrt{x}+2=9\sqrt{x}\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(2x-\sqrt{x}-4\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=4\end{cases}\left(tm\right)}\)

Vậy...

c) \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}=2+\frac{x+1}{\sqrt{x}}\ge2+\frac{2\sqrt{x}}{\sqrt{x}}=4\)

Dấu "=" xảy ra <=> x = 1.

Vậy M >=4 

12 tháng 9 2020

a) \(B=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

ĐKXĐ: \(x\ge0,x\ne1\)

\(B=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{2}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x+3}}\)

b) Để \(B=\frac{1}{2}\Rightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\sqrt{x}+3=4-10\sqrt{x}\Rightarrow11\sqrt{x}=1\Rightarrow\sqrt{x}=\frac{1}{12}\Rightarrow x=\frac{1}{121}\)(Thoả mãn ĐKXĐ)

Vậy x=1/121 thì B =1/2

31 tháng 7 2020

Ta có: \(P=\frac{\sqrt{x}-4}{\sqrt{x}}\times\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)

 \(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)\(\left(ĐK:x>0\right)\)

Ta lấy \(P-2=\frac{x+\sqrt{x}+1}{\sqrt{x}}-2\)

                       \(=\frac{x+\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}\)

                       \(=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

                       \(=\frac{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}}{\sqrt{x}}\)

                      \(=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}\)

Vì \(x>0\Rightarrow\sqrt{x}>0\)

 \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}>0\)

\(\Rightarrow P-2>0\)

\(\Rightarrow P>2\)

Học tốt 

Ta có : \(\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)

\(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)

ta xét  : \(\frac{2}{\sqrt{x}}\ge\frac{1}{\sqrt{x}+1}\)

\(\Rightarrow1-\frac{1}{\sqrt{x}+1}\ge1-\frac{2}{\sqrt{x}}\Leftrightarrow N\ge H\)

15 tháng 10 2016

Ta có

N = \(\frac{\sqrt{x}}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)

M = \(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(1-\frac{2}{\sqrt{x}}\)

=> N - M = \(\frac{2}{\sqrt{x}}-\frac{1}{\sqrt{x}+1}=\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}>0\)

Vậy N > M

5 tháng 6 2015

Mau la \(\sqrt{X - 3} \) that sao