K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)

20 tháng 4 2019

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)

\(B=\frac{1}{20}\)

26 tháng 1 2017

k minh minh giai cho

26 tháng 1 2017

\(\frac{2.\left(x+4\right)}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}+\frac{\sqrt{x}.\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}-\frac{8.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)      

=\(\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}\)

=\(\frac{3x-12\sqrt{x}}{mc}\)  

=\(\frac{3\sqrt{x}.\left(\sqrt{x}-4\right)}{\left(\sqrt{x-4}\right)\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}}{\sqrt{x}+1}\) 

k tk mk cung lam cho

18 tháng 7 2017

\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)

21 tháng 11 2017

Cái này dễ mà bn

Ta có:\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐK:x\ne2;-3\right)\)

    \(\Leftrightarrow A=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

    \(\Leftrightarrow A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

     \(\Leftrightarrow A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x+4}{x-2}\)

21 tháng 11 2017

\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(\Leftrightarrow A=\frac{x}{\left(2+3\right)}^2-\frac{5}{x^3-6}+\left(2-x\right)\)

\(\Leftrightarrow A=\frac{x}{5}^2-\frac{5}{x^3-6}+\left(2-x\right)\)

Ps: Không chắc đâu nhé! Thánh đây mới lớp 6 thôi

8 tháng 8 2018

ms hk xog bài này !!!

^_^

18 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{x-9}\)

\(=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

b) Ta có: \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\left|\sqrt{3}-1\right|}\)

\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=\sqrt{1}=1\)( thỏa mãn ĐKXĐ )

Thay \(x=1\)vào M ta được:

\(M=\frac{3\sqrt{1}}{\sqrt{1}-3}=\frac{3}{1-3}=\frac{-3}{2}\)

c) \(M=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\sqrt{x}-9+9}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)

Vì \(x\inℕ\)\(\Rightarrow\)Để M là số tự nhiên thì \(\frac{9}{\sqrt{x}-3}\inℕ\)

\(\Rightarrow9⋮\left(\sqrt{x}-3\right)\)\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\)(1)

Vì \(x\ge0\)\(\Rightarrow\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3\ge-3\)(2)

Từ (1) và (2) \(\Rightarrow\sqrt{x}-3\in\left\{-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\)\(\Rightarrow x\in\left\{0;4;16;36;144\right\}\)( thỏa mãn ĐKXĐ )

Thử lại với \(x=4\)ta thấy M không là số tự nhiên

Vậy \(x\in\left\{0;16;36;144\right\}\)

19 tháng 8 2018

giúp vs

20 tháng 8 2018

a)  ĐKXĐ:  \(x\ne1\)

b)  \(A=\frac{2}{x-1}+\frac{2\left(x+1\right)}{x^2+x+1}+\frac{x^2-10x+3}{x^3-1}\)

\(=\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x-1\right)\left(5x-3\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{5x-3}{x^2+x+1}\)

2 tháng 2 2018

Ta có :

\(\frac{x+1}{3}=\frac{-1}{y-2}\)\(\Rightarrow\)\(\left(x+1\right)\left(y-2\right)=\left(-1\right).3\)

\(\left(x+1\right)\left(y-2\right)=-3\)

TRƯỜNG HỢP 1 :

\(\hept{\begin{cases}x+1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TRƯỜNG HỢP 2 :

\(\hept{\begin{cases}x+1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

TRƯỜNG HỢP 3 :

\(\hept{\begin{cases}x+1=3\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

TRƯỜNG HỢP 4 :

\(\hept{\begin{cases}x+1=-3\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}}\)

Vậy ...