Cho hai số hữu tỉ x,y (x # 0;y #0); biết hai phần ba tổng của chúng bằng ba phần tư tích của hai số đó. Tính giá trị biểu thức của \(\frac{-8}{x}-\frac{8}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy z là trung bình cộng của x và y:
z = (x + y)/2
z là số hữu tỉ vì nó có thể biểu diễn được thành phân số có tử số và mẫu số là số nguyên. Dễ dạng chứng minh được:
x < (x + y)/2 < y
Ta có: x + y = xy = x : y (y ≠ 0)
Vì x + y = xy => x = xy – y = y(x -1)
=> x : y = x -1 (1)
Vì x : y = x + y (2)
Từ (1) và (2) suy ra: x + y = x – 1 => y = -1
Thay y = -1 vào (1) ta có: - x = x -1 => x=1/2
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Rightarrow y^2=1\)
Với y = 1 \(\Rightarrow x+1=x.1=x:1=x\)(Vô lý )
Với y =-1 \(\Rightarrow x-1=-x\)
\(\Rightarrow x-\left(-x\right)=1\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x = 1/2 ; y = -1
x-y=x.y
=>x=x.y+y=y.(x+1)
=>x/y=x+1 (1)
Mà x-y=x/y (gt)
=>x-y=x+1
=>-y=1
=>y=-1
Thay y=-1 vào x-y=x.y
=>x-(-1)=x.(-1)
=>x+1=-x
=>2x=-1=>x=-1/2
Vậy x=-1/2;y=-1