K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

Khó quá à

25 tháng 10 2018

\(A=1+2+2^2+.....+2^{2018}\)

\(\Leftrightarrow2A=2+2^2+....+2^{2018}+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2019}\right)-\left(1+2+2^2+....+2^{2018}\right)\)

\(\Leftrightarrow A=2^{2019}-1< 2^{2019}\)

Vậy \(A< 2^{2019}\)

bạn viết lại đề đc ko bạn:>,ko hỉu đề

23 tháng 2 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????

2/3A=2/3-(2/3)^2+...+(2/3)^2019-(2/3)^2020

=>5/3A=1-(2/3)^2020

=>A=(3^2020-2^2020)/3^2020:5/3=\(\dfrac{3^{2020}-2^{2020}}{3^{2020}}\cdot\dfrac{3}{5}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên

15 tháng 12 2018

Ta có : \(A=2^0+2^1+2^2+...+2^{2018}\)

\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2019}\)

\(\Rightarrow2A-A=2^{2019}-2^0\)

\(\Rightarrow A=2^{2019}-1\)

\(\Rightarrow A=B\)

Tham khảo nak ~

9 tháng 10 2018

\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)

   \(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)

Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)

\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)

\(2Q-Q=2^{2019}-1\)

\(Q=2^{2019}-1\)(2) 

Từ (1) và (2), ta được:

\(S=2^{2019}-\left(2^{2019}-1\right)=1\)

     

16 tháng 9 2018

\(3^{202}:3^{199}-4^{301}.4^{199}\)

\(=3^{202-199}-4^{301+199}\)

\(=3^3-4^{500}\)

\(=9-4^{500}\)

26 tháng 9 2018

S = 1-3 + 32 - 33 + ..+ 32018 - 32019

=> 3S = 3 - 32 + 33 - 34 +...+ 32019 - 32020

=> 3S + S = 1 - 32020

4S = 1 - 32020

\(S=\frac{1-3^{2020}}{4}\)

26 tháng 9 2018

bài này phải là 1 + đó bạn