Chững tỏ rằng:
1/2+1/2 mũ 2+1/2 mũ 3+...+1/2 mũ 2012<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{2007^2}\)\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{2006.2007}\)
\(=\frac{5-4}{4.5}+\frac{6-5}{6.5}+....+\frac{2007-2006}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)
vậy đpcm
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
................
1/8²<1/7.8
=>B<1/1.2+1/2.3+1/3.4+...+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=>B<1-1/8
Vậy B < 1
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
k cho mink nha
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
owo
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Ta thấy: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(.......\)
\(\frac{1}{10^2}< \frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)
Cộng theo vế ta được:
\(D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)\(=1-\frac{1}{10}\)\(< 1\) (đpcm)
Ta có 1/1^2+...+1/100^2<1/1.2+1/2.3+...+1/100.101
Gọi biểu thức này là A thì ta có
A<1/1-1/2+1/2-1/3+1/3-........-1/100+1/100-1/101
Suy ra A<1-1/101
Mà 1-1/101<1<2
\(\Rightarrow\)A<2(đpcm)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
cm \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}< 1\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(\frac{1}{2}A-A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(-\frac{1}{2}A=\frac{1}{2^{2013}}-\frac{1}{2}\)
\(\Leftrightarrow A=1-\frac{1}{2^{2012}}< 1\)
\(\RightarrowĐPCM\)