Tìm nghiệm của đa thức:M(x)=2x^3-x^3+6x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho M(x) =0
\(=>x^3-25x=0=>x\left(x^2-25\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=25=>\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\end{matrix}\right.\)
`M(x)=7x^4+3-3x^2-7x^4+2x-7`
`M(x)=(7x^4-7x^4)-3x^2+2x+(3-7)`
`M(x)=-3x^2+2x-4`
`->` Bậc của đa thức là `2.`
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)
phần a nek
sắp xếp : M(x) =-x3+1/2x2-3x+3
N(x)=1/2x3+x2-4x+6
CHÚC BẠN HỌC TỐT !!!!
a) Sữa đề: \(x^2+2x-3=0\)
\(\Rightarrow x^2-x+3x-3=0\)
\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b) \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
c) \(2x-8x^3=0\)
\(\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{3}-6x^2=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.
Giải : đặt M(x) = 0
=> -4x+5=0
-4x = 0-5
-4x = -5
x = -5 : 4
x = -1.25 (hãy chuyển thành phân số nhé)
a)M=3x2y-2xy2+2x2y+2xy+3xy2
=\(5x^2y+xy^2+2xy\)
N=2x2y+xy+xy2-4xy2-5xy
=\(2x^2y-3xy^2-4xy\)
b) M-N=(\(5x^2y+xy^2+2xy\))-(\(2x^2y-3xy^2-4xy\))
=\(5x^2y+xy^2+2xy\)\(-\)\(2x^2y+3xy^2+4xy\)
=\(3x^2y+4xy^2+6xy\)
M+N=\(5x^2y+xy^2+2xy\)\(+\)\(2x^2y-3xy^2-4xy\)
=\(7x^2y-2xy^2-2xy\)
c) Ta có P(x)=0
\(\Rightarrow\)6-2x=0
\(\Rightarrow\)x=3
Vậy x=3 là nghiệm của đa thức P(x)
Thay x=0 vào đa thức 2x^3-x^3+6x, ta được:
2*0^3-0^3+6*0 = 2*0-0+6*0 = 0-0+0=0
Vậy : 0 là nghiệm của đa thức 2x^3-x^3+6x
Chúc bạn học tốt