K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

Thay x=0 vào đa thức 2x^3-x^3+6x, ta được:

2*0^3-0^3+6*0 = 2*0-0+6*0 = 0-0+0=0

Vậy : 0 là nghiệm của đa thức 2x^3-x^3+6x

Chúc bạn học tốtvui

5 tháng 4 2022

cho M(x) =0

\(=>x^3-25x=0=>x\left(x^2-25\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=25=>\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\end{matrix}\right.\)

5 tháng 4 2022

M(x) =0

\(=>x^5+27x^2=0=>x^2\left(x^3+27\right)=0\)

\(=>\left[{}\begin{matrix}x^2=0\\x^3=-27\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

`M(x)=7x^4+3-3x^2-7x^4+2x-7`

`M(x)=(7x^4-7x^4)-3x^2+2x+(3-7)`

`M(x)=-3x^2+2x-4`

`->` Bậc của đa thức là `2.`

20 tháng 4 2023

Ta có :

`M(x)=7x^4 + 3 - 3x^2 - 7x^4 + 2x -7`

`= (7x^4-7x^4) -3x^2+2x+(3-7)`

`= -3x^2 + 2x - 4`

Bậc của đa thức là : `2`

`@ yngoc`

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

12 tháng 5 2019

phần a nek

sắp xếp : M(x) =-x3+1/2x2-3x+3

N(x)=1/2x3+x2-4x+6

CHÚC BẠN HỌC TỐT !!!!

20 tháng 7 2023

a) Sữa đề: \(x^2+2x-3=0\)

\(\Rightarrow x^2-x+3x-3=0\)

\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b) \(x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c) \(2x-8x^3=0\)

\(\Rightarrow2x\left(1-4x^2\right)=0\)

\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{3}-6x^2=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

20 tháng 7 2023

a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.

21 tháng 4 2022

Giải : đặt M(x) = 0

=> -4x+5=0

     -4x = 0-5 

     -4x = -5 

     x = -5 : 4

     x = -1.25 (hãy chuyển thành phân số nhé)

 

17 tháng 3 2023

ỏ cảm mơn nhaaaa ! có j giúp típ nha thank kiuuu 

a)M=3x2y-2xy2+2x2y+2xy+3xy2

       =\(5x^2y+xy^2+2xy\)

     N=2x2y+xy+xy2-4xy2-5xy

     =\(2x^2y-3xy^2-4xy\)

b) M-N=(\(5x^2y+xy^2+2xy\))-(\(2x^2y-3xy^2-4xy\))

           =\(5x^2y+xy^2+2xy\)\(-\)\(2x^2y+3xy^2+4xy\)

           =\(3x^2y+4xy^2+6xy\)

M+N=\(5x^2y+xy^2+2xy\)\(+\)\(2x^2y-3xy^2-4xy\)

        =\(7x^2y-2xy^2-2xy\)

c) Ta có P(x)=0

\(\Rightarrow\)6-2x=0

\(\Rightarrow\)x=3

Vậy x=3 là nghiệm của đa thức P(x)

24 tháng 5 2021

cảm ơn bạn nha