Chứng tỏ rằng:
A=1/1.2.3+1/2.3.4+1/3.4.5+.....+1/20.21.22>57/231
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{20.21.22}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{20.21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{20.21}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{462}\right)=\frac{1}{2}.\frac{115}{231}=\frac{115}{462}\)
* Công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{20.21.22}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{20.21}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{462}\right)\)
\(=\frac{1}{2}.\left(\frac{231}{462}-\frac{1}{462}\right)\)
\(=\frac{1}{2}.\frac{230}{462}\)
\(=\frac{115}{462}\)
Chúc bạn học tốt !!!
A= \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ ... + \(\frac{1}{19.20.21}\)< \(\frac{1}{4}\)
= 1 - \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ... + \(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\)
= 1 - ( \(\frac{1}{2}-\frac{1}{3}\)+ \(\frac{1}{2}-\frac{1}{3}\)) + ... + ( \(\frac{1}{19}-\frac{1}{20}+\frac{1}{19}-\frac{1}{20}\)) - \(\frac{1}{21}\)
= 1 - \(\frac{1}{21}\)
= \(\frac{20}{21}\)< \(\frac{1}{4}\)
=> Đề bài có sai ko bạn?
* Chứng tỏ
Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)
= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)
= \(\dfrac{4849}{19800}\)
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{20\cdot21\cdot22}=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{20\cdot21\cdot22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{20\cdot21}-\frac{1}{21\cdot22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{21\cdot22}\right)\)
\(=\frac{1}{2}\left(\frac{231}{462}-\frac{1}{462}\right)=\frac{1}{2}\cdot\frac{230}{462}=\frac{1}{2}\cdot\frac{115}{231}=\frac{115}{462}\)
Ta có:
B=1.2.3+2.3.4+3.4.5+...+20.21.22
=>4B=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+...+20.21.22(23-19)
<=>4B=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+20.21.22.23-19.20.21.22
<=>4B=20.21.22.23
<=>B=5.21.22.23=53130
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{20\cdot21\cdot22}\)
\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{20\cdot21\cdot22}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{20\cdot21}-\frac{1}{21\cdot22}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{21\cdot22}\right]=\frac{1}{2}\cdot\frac{115}{231}=\frac{230}{231}>\frac{57}{231}(đpcm)\)
Sửa dùm chút :v
Chỗ \(\frac{1}{2}\cdot\frac{115}{231}=\frac{115}{462}>\frac{57}{231}(đpcm)\)