CMR \(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\) (n > 1 ; n ∈ N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)
Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)
Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)
\(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)
\(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)
Áp dụng bđt (1) được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)
Dấu "=" xảy ra tại a = b
Áp dụng buổi thức đơn ta được
\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được
\(\frac{1}{1+A}\)+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{A+B=2}{ }\)
\(\frac{A+B=2}{1+A+B}\)
\(VẬY\)Nếu bạn làm tắt theo mik thì
Mik chưa ra đáp án được vì
\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI
MAGICPENCIL,HÃY LUÔN :-)
\(VT=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
\(=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\)
\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy :
\(VT\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(=3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(ab+ac+bc\le a^2+b^2+c^2\\ \Rightarrow3\left(ab+ac+bc\right)\le a^2+b^2+c^2+2\left(ab+ac+bc\right)\\ \Rightarrow3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2=9\\ \Rightarrow ab+ac+bc\le3\\ \Rightarrow2\left(ab+ac+bc\right)\le6\)
Áp dụng BDT Cô-si với 3 số dương:
\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{9}{a^2+1+b^2+1+c^2+1}\\ =\frac{9}{a^2+b^2+c^2+3}=\frac{9}{a^2+b^2+c^2+6-3}\\ \ge\frac{9}{a^2+b^2+c^2+2\left(ab+ac+bc\right)-3}=\frac{9}{\left(a+b+c\right)^2-3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{a^2}+\frac{1}{c^2}\geq \frac{2}{ac}\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=\frac{3}{abc}\)
Để bài toán được giải quyết ta sẽ CM: \(\frac{3}{abc}\geq a^2+b^2+c^2\)
\(\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)\)
Thật vậy, theo BĐT AM-GM và các hệ quả của nó:
\(9abc=3abc(a+b+c)\leq (ab+bc+ac)^2\)
\(\Rightarrow 9abc(a^2+b^2+c^2)\leq (ab+bc+ac)^2(a^2+b^2+c^2)\)
Mà: \((ab+bc+ac)^2(a^2+b^2+c^2)\leq \left(\frac{ab+bc+ac+ab+bc+ac+a^2+b^2+c^2}{3}\right)^3=\frac{(a+b+c)^6}{27}=27\)
\(\Rightarrow 9abc(a^2+b^2+c^2)\leq 27\Rightarrow abc(a^2+b^2+c^2)\leq 3\)
BĐT $(*)$ được cm. Bài toán hoàn tất.
Dấu "=" xảy ra khi $a=b=c=1$
BĐT chỉ đúng với điều kiện \(a;b\) dương, còn a, b âm thì sai hoàn toàn
Khi \(a;b\) dương, biến đổi tương đương:
\(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\Leftrightarrow\left(a^n+b^n\right)\left(a^{n-2}+b^{n-2}\right)\ge\left(a^{n-1}+b^{n-1}\right)^2\)
\(\Leftrightarrow a^{2\left(n-1\right)}+b^{2\left(n-1\right)}+a^nb^{n-2}+a^{n-2}b^n\ge a^{2\left(n-1\right)}+b^{2\left(n-1\right)}+2a^{n-1}b^{n-1}\)
\(\Leftrightarrow a^nb^{n-2}+a^{n-2}b^n\ge2a^{n-1}b^{n-1}\) (luôn đúng theo BĐT Cauchy)
Vậy BĐT được chứng minh