Tính nhanh:
P=(1-1/3)x(1-1/3)x(1-1/4)x......x(1-1/99)x(1-1/100)
chú thích: dấu"/"là dấu phân số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.......\frac{1}{13x15}=\frac{1}{2}x\frac{2}{1x3}+\frac{2}{3x5}.......+\frac{2}{13x15}\)
\(A=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\right)\)
Còn lại em nhân giống ở trên nhé
Đặt A = 1/15 + 1/35 + ... + 1/3135
A = 1/3.5 + 1/5.7 + ... + 1/55.57
2A = 2/3.5 + 2/5.7 + ... + 2/55.57
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/55 - 1/57
2A = 1/3 - 1/57 = 6/19
A = 3/19
a: \(x+6\dfrac{1}{8}=8\)
=>\(x+\dfrac{49}{8}=\dfrac{64}{8}\)
=>\(x=\dfrac{64}{8}-\dfrac{49}{8}=\dfrac{15}{8}\)
b: \(\dfrac{11}{2}\cdot x=\dfrac{1}{5}:\dfrac{1}{3}\)
=>\(x\cdot\dfrac{11}{2}=\dfrac{1}{5}\cdot3=\dfrac{3}{5}\)
=>\(x=\dfrac{3}{5}:\dfrac{11}{2}=\dfrac{3}{5}\cdot\dfrac{2}{11}=\dfrac{6}{55}\)
c: \(x\cdot\dfrac{3}{5}+\dfrac{2}{5}\cdot x=\dfrac{4}{9}+\dfrac{1}{3}\)
=>\(x\left(\dfrac{3}{5}+\dfrac{2}{5}\right)=\dfrac{4}{9}+\dfrac{3}{9}\)
=>\(x\cdot1=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}\)
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
a) \(\frac{1}{3}+\frac{5}{6}:\left(x-2\frac{1}{5}\right)=\frac{3}{4}\)
=> \(\frac{1}{3}+\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{3}{4}\)
=> \(\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{3}{4}-\frac{1}{3}\)
=> \(\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{5}{12}\)
=> \(x-\frac{11}{5}=\frac{5}{6}:\frac{5}{12}\)
=> \(x-\frac{11}{5}=2\)
=> \(x=2+\frac{11}{5}\)
=> \(x=\frac{21}{5}\)
\(B=\left(1+\dfrac{1}{100}\right)\times\left(1+\dfrac{1}{99}\right)\times....\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101\times100\times....\times4\times3}{100\times99\times....\times3\times2}\)
\(B=\dfrac{101}{2}\)
\(\Rightarrow B=\left(\dfrac{100}{100}+\dfrac{1}{100}\right)\times\left(\dfrac{99}{99}+\dfrac{1}{99}\right)\times...\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101}{2}\)( triệt tiêu các mẫu, tử giống nhau)
1/2-(4/12+9/12)<x<1/24-(3/24-8/24)
1/2-13/12<x<1/24-(-5/24)
-7/12<x<1/4
=>x\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) E{0}
ta có:\(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)=\frac{-1}{12}=-0,08333333\)
mà \(\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)=\frac{1}{4}=0.25\)
nên suy ra không có số nguyên x nào thỏa mãn đề bài.
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{\left(x-1\right)\times x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x-1}-\dfrac{1}{x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{x}=\dfrac{15}{16}\)
\(\dfrac{1}{x}=1-\dfrac{15}{16}=\dfrac{16}{16}-\dfrac{15}{16}\)
\(\dfrac{1}{x}=\dfrac{1}{16}\)
\(\Rightarrow x=16\)
Xin phép sửa lại đề.
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)\)
\(1-\frac{1}{2}=\frac{1}{2}\)
\(1-\frac{1}{3}=\frac{2}{3}\)
\(1-\frac{1}{4}=\frac{3}{4}\)
.........................
\(1-\frac{1}{99}=\frac{98}{99}\)
\(1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow P=\frac{1.2.3...98.99}{2.3.4...99.10}\)
\(P=\frac{\left(1.2.3...98.99\right)}{\left(2.3.4...99.100\right)}\)
\(P=\frac{1}{100}\)
Vậy: P = 1/100