K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1 2022

\(1+2cosx=2\Leftrightarrow cosx=\dfrac{1}{2}\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

6 tháng 5 2021

Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)

\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) =  - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B =  - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) =  - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) =  - \frac{3}{8}\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

16 tháng 5 2020

lớp 1

17 tháng 5 2020

lop may vay ban

20 tháng 10 2024

Yes

11 tháng 9 2023

a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)

c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)

=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)

=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)