a, Chứng minh rằng: Với mọi STN n thì 2n+1 và n(n+1) là hai số nguyên tố cùng nhau.
b, Tìm số tự nhiên n để phân số n=1/ n^2+1 có giá trị nguyên.
Cần gấp, ai nhanh nhất 2 tick nhé!
Love~
#Runa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Làm ơn nhanh được không ạ? Tớ cần gấp, mai phải nộp cho cô rồi mà h chưa làm xong!
Đề câu a thiếu bạn ơi~
Cmr: Với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau
Giải :
Gọi d là một ước chung của \(2n+1\)và \(\frac{n\left(n+1\right)}{2}\). Ta có :
\(2n+1⋮d;\frac{n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d;\frac{4.n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow2n^2+1-2n\left(n+1\right)⋮d\)
\(\Rightarrow2n^2+n-2n^2+n^2\)
\(\Rightarrow n⋮d\)
Vì \(n⋮d\Rightarrow2n⋮d\) mà \(2n+1⋮d\) nên \(1⋮d\)
\(\Rightarrow d=1\)
Vậy với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau.