cho x y z thuộc số nguyên dương với x>y>z
để 1/x+1/y+1/z=1 tìm x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Vì \(x;y;z\inℕ^∗\) và \(x< y< z\)nên \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
\(\Rightarrow0< \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}< 2\)
\(\Rightarrow0< k< 2\)
Mà k nguyên dương nên k = 1
Với k = 1 thì pt : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
*Với x = 1 thì VT > VP với mọi y ; z nguyên dương
*Với x > 3 thì y > 4 và z > 5
\(\Rightarrow VT\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 1\)
=> pt vô nghiệm
Do đó x = 2
\(\Rightarrow\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Leftrightarrow\frac{y+z}{yz}=\frac{1}{2}\)
\(\Leftrightarrow2y+2z=yz\)
\(\Leftrightarrow\left(2y-yz\right)+\left(2z-4\right)=-4\)
\(\Leftrightarrow y\left(2-z\right)+2\left(z-2\right)=-4\)
\(\Leftrightarrow\left(y-2\right)\left(2-z\right)=-4\)
\(\Leftrightarrow\left(y-2\right)\left(z-2\right)=4\)
Từ pt \(\Rightarrow y\ne2\)
=> y > 2
Vì \(\hept{\begin{cases}y>2\\z\ge3\end{cases}\Rightarrow}\hept{\begin{cases}y-2>0\\z-2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\left(h\right)\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\left(h\right)\hept{\begin{cases}y-2=4\\z-2=1\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}\)(Do y < z )
Vậy \(\hept{\begin{cases}x=2\\y=3\\z=6\end{cases}}\)
Ta có: x,y,z \(\in\)Z ,nên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\)
\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)
\(\Rightarrow B>1\)
Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1
Do đó A < 2.Vậy 1 < A < 2
=> A có giá trị là 1 số không thuộc tập hợp số nguyên