Cho x\(^2\)+y\(^2\)=\(\frac{25xy}{12}\)và x>y>0
Tính giá trị biểu thức Q=\(\frac{x+y}{x-y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)
\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)
\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
Có: \(3x^2+3y^2=10xy\)
\(\Leftrightarrow3x^2-9xy-xy+3y^2=0\)
\(\Leftrightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Leftrightarrow\left(x-3y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3y=0\\3x-y=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3y\left(KTM:y>x\right)\\3x=y\left(tm\right)\end{cases}}\)
Với \(3x=y\) , ta có: \(K=\frac{x+y}{x-y}=\frac{x+3x}{x-3x}=\frac{4x}{-2x}=-2\)
K2= (\(\frac{X+Y}{X-Y}\))2 = \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\)= \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
= \(\frac{3x^2+6xy+3y^2}{3x^2-6xy+3y^2}\)= \(\frac{10xy+6xy}{10xy-6xy}\)= \(\frac{16xy}{4xy}\)= 4
=> K = -2 hoặc 2
mà y>x>0 nên K =\(\frac{x+y}{x-y}\)<0
=> K = -2
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
Đơn giản biểu thức ta được:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)
\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)
Ta bắt đầu tìm \(MIN:\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\)
Tìm \(MAX\) cho bạn luôn:
Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)
Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)
\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)
\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)
\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)
Để \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1
\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0
Vậy không tìm được \(B_{max}\)
áp dụng bdt cauchy -schửat dạng engel ta có
\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)\(\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}=\frac{1}{2}\)
(do \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) bn tự cm nhé)
dau = xay ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(12\left(x^2+y^2\right)=25xy\Leftrightarrow\frac{12\left(x^2+y^2\right)}{xy}=25\)
\(\Leftrightarrow12\left(\frac{x}{y}+\frac{y}{x}\right)=25\)
Đặt \(\frac{x}{y}=t>1\Rightarrow12\left(t+\frac{1}{t}\right)=25\Leftrightarrow12t^2-25t+12=0\) \(\Rightarrow t=\frac{4}{3}\)
\(\Rightarrow Q=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{t+1}{t-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=7\)