K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

n+13 chia hết cho n-5

n-5 chia hết cho n-5

n-5+18 chia hết cho n-5

=>n-5 là Ư(18)={1;2;3;6;18}

Nếu n-5 =1=>n=6

Nếu n-5 =2=>n=7

Nếu n-5 =3=>n=8

Nếu n-5 =6=>n=11

Nếu n-5 =18=>n=23

2 tháng 1 2021

Ta có n-2chia hết cho n-2                                                                                                                                                                                    =>n+5=[(n-2)+7]=>7chia hết cho n-2(vì n-2 chia hết cho n-2)                                                                                                                            =>Để 7chia hết cho n-2 thì n-2 e {1,7}                                                                                                                                                                =>n-2e{1,7}                                                                                                                                                                                                          =>ne{3,9}

                                       

2 tháng 1 2021

a, \(n+5⋮n-2\)

\(n-2+7⋮n-2\)

\(7⋮n-2\)hay \(n-2\inƯ\left(7\right)=\left\{1;7\right\}\)

n - 217
n39

b, \(2n+1⋮n-5\)

\(2\left(n-5\right)+11⋮n-5\)

\(11⋮n-5\)hay \(n-5\inƯ\left(11\right)=\left\{1;11\right\}\)

Lập bảng tương tự, ngại quá -.- 

24 tháng 10 2016

Câu a ) n thì tất nhiên phải chia hết cho n

Câu b ) a = 5          ;  b=5     ;a=0      ;b=0

Câu c : a=0      ;b=0

28 tháng 7 2017

Câu 1:

Ta có:

\(n=11k+4\)

\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)

\(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên

\(121k^2+88k+16\) chia cho 11 dư 5

Do đó \(n^2\) chia cho 11 dư 5.

Câu 2:

Ta có:

\(n=13k+7\)

\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)

\(=169k^2+182k+49-10=169k^2+182k+39\)

\(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.

Do đó \(n^2-10\) chia hết cho 13.

Chúc bạn học tốt!!!

28 tháng 7 2017

thanks bạn nha!!! Chúc bạn học tốt nha!!!

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

11 tháng 1 2016

Ta co 

(n-3) CHC (n+1)

-> n+1CHC n+1

->(n-3)-(n+1) CHC (n+1)

->      -4            CHC (n+1)

->n+1={1;-1;2;-2;4;-4}

->n={0;-2;1;-3;3;-5}

 

11 tháng 1 2016

a) sai đề

b)2n-5 chia hết cho n+1=>(2n+2)-(5-2)=> 3 : n+1 => n+1={1;3}=>n={0;2}