Chứng minh biểu thức N=2x2 + 7y2 - 6xy + 10x - 30y +45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=2\left(x^2+\frac{9y^2}{4}-3xy+5x+\frac{25}{4}-\frac{15}{2}y\right)+\frac{5}{2}\left(y^2-6y+9\right)+10\)
\(N=\left(x-\frac{3}{2}y+\frac{5}{2}\right)^2+\frac{5}{2}\left(y-3\right)^2+10>0\) \(\forall x;y\)
a/
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)
\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn
b/
\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)
\(\Rightarrow\) Không tồn tại x; y thỏa mãn
c/
\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)
Không tồn tại x; y thỏa mãn
Với x = 20040, ta có: A = 10/20040 = 1/2004.
Vậy A = 1/2004 khi x = 20040.
Với x = 20040, ta có: A = 10/20040 = 1/2004.
Vậy A = 1/2004 khi x = 20040.
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
Giá trị của biểu thức xác định khi mỗi giá trị của phân thức trong biểu thức đều được xác định.
Khi đó điều kiện xác định:
CM j z bn???
Chứng minh N luôn nhận giá trị dương với mọi x,y. (sorry, mình gõ thiếu)