Bài 7: Biết a // b, DAC = 50; CBE = 40
a) Tính số đo ACB ?
b) Biết \(\text{4D}_1\) = \(\text{5E}_1\). Tính \(\text{D}_1\)? \(\text{E}_1\) ?
a b A B c C D E 1 1 50 40 0 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: góc BAC=50 độ
ΔABC cân tại A
=>góc B=(180-góc BAC)/2
=(180 độ-50 độ)/2=65 độ
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được
Góc DAC là góc nằm trong tam giác ABD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác ABD trừ đi góc ADB: Góc DAC = 180° - góc ABD = 180° - 60° = 120°
Góc ADB là góc nằm trong tam giác CBD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác CBD trừ đi góc CDB:
Góc ADB = 180° - góc CBD = 180° - 20° = 160°
Vậy số đo các góc DAC và ADB lần lượt là 120° và 160°.
F C A D B E 1 2 3 x
Kéo dài DA
Ta có:
\(\widehat{A3} + \widehat{C} = 140^O + 40^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) CF // DA (dhnb)
\(\widehat{A3} + \widehat{A1} = 180^O\) (kề bù)
\(140^O + \widehat{A1} = 180^O (\widehat{A3} = 140^O(gt))\)
\(\widehat{A1} = 180^O - 140^O\)
\(\widehat{A1} = 40^O\)
\(\widehat{A1} + \widehat{A2} = \widehat{BAC}\) (Ax nằm giữa 2 tia AB và AC)
\(40^O + \widehat{A2} = 90^O (\widehat{A1} = 40^O(cmt); AB \perp AC (gt))\)
\(\widehat{A2} = 90^O - 40^O\)
\(\widehat{A2} = 50^O\)
\(\Rightarrow\)\(\widehat{A2} = \widehat{B} = 50^O\)
mà 2 góc này nằm ở vị trí so le trong.
\(\Rightarrow\) BE // DA (dhnb)
mà CF // DA (cmt)
\(\Rightarrow\) CF // BE (Định lí 3 trong bìa từ vuông góc đến song song)