K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

J
15 tháng 4 2019

a) \(\left(2x^2+3x-6\right)^2-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\) \(\left(2x^2+3x-6-3x+2\right)\left(2x^2+3x-6+3x-2\right)=0\)

\(\Leftrightarrow\) \(\left(2x^2-4\right)\left(2x^2+6x-8\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x^2-4=0\\2x^2+6x-8=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}2\left(x^2-2\right)=0\\2\left(x^2+3x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2+3x-4=0\left(2\right)\end{matrix}\right.\)

(1) \(x^2=2\) \(\Leftrightarrow x=\pm\sqrt{2}\)

(2) Vì \(a+b+c=1+3-4=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(x_1=1\) ; \(x_2=\frac{c}{a}=-4\)

Vậy \(S=\left\{\pm\sqrt{2};1;-4\right\}\)

b) \(x^2-9x+20=0\)

\(\Delta=\left(-9\right)^2-4\times20=81-80=1\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)+\sqrt{1}}{2}=5\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)-\sqrt{1}}{2}=4\)

Theo đề bài ta có hệ phương trình sau :

\(\left\{{}\begin{matrix}a+b=5\\ab=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5b-b^2=4\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=5-b\\b^2-5b+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=5-1=4\\a=5-4=1\end{matrix}\right.\\\left[{}\begin{matrix}b=4\\b=1\end{matrix}\right.\end{matrix}\right.\) Vậy (a;b)=(4;1);(1;4)

13 tháng 3 2021

Ta có \(x^2+9x+20=0\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\end{matrix}\right.\).

Xét 2 TH:

+) a + b = -4; ab = -5: Theo định lý Viet đảo ta có a, b là hai nghiệm của pt \(t^2+4t-5=0\Leftrightarrow\left(t-1\right)\left(t+5\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\end{matrix}\right.\)

+) a + b = -5; ab = -4: Bạn giải tương tự.

21 tháng 1 2018

1a, xy+3x-7y-21=0

<=>x(y+3)-(7y+21)=0

<=>x(y+3)-7(y+3)=0

<=>(x-7)(y+3)=0

1b, xy+3x-2y=6

<=>(xy+3x)-2y-6=0

<=>x(y+3)-2(y+3)=0

<=>(x-2)(y+3)=0

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

NV
27 tháng 9 2020

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m-1=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m-1=0\)

Đặt \(x^2+6x+7=\left(x+3\right)^2-2=t\ge-2\) ta được:

\(\left(t-2\right)\left(t+1\right)-m-1=0\)

\(\Leftrightarrow t^2-t-m-3=0\) (1)

a/ Bạn tự giải (thay số bấm máy ez)

b/ Pt có nghiệm thỏa \(x^2+6x+7\le0\) khi và chỉ khi (1) có nghiệm \(t\in\left[-2;0\right]\)

Ta có: \(\left(1\right)\Leftrightarrow t^2-t-3=m\)

Xét hàm \(f\left(t\right)=t^2-t-3\) trên \(\left[-2;0\right]\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{1}{2}>0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-2;0\right]\)

\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(-2\right)\Rightarrow-3\le f\left(t\right)\le3\)

\(\Rightarrow-3\le m\le3\)

a: =>7-x=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

a: =>-x+7=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)