K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật

Lại có : AD = AE (tính chất hai tiếp tuyến giao nhau)

Vậy tứ giác ADOE là hình vuông

24 tháng 6 2017

a) tứ giác ADOE là hình vuông

\(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)

và OD = OE = R

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

17 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

19 tháng 1

(a) \(P,Q\) đối xứng với nhau qua \(BC\) nên \(BC\) là đường trung trực của \(PQ\).

Suy ra: \(CQ=CP\Rightarrow\Delta CPQ\) cân tại \(C\Rightarrow\hat{KCP}=\hat{KCQ}\), hay \(\hat{BCP}=\hat{BCF}\). Mà \(\hat{BAP}=\hat{BCP}\) (góc nội tiếp cùng chắn cung \(\stackrel\frown{BP}\)).

Do đó: \(\hat{BAP}=\hat{BCF}\)

Xét \(\Delta ABK,\Delta CBF:\)

\(\hat{B}\) chung và \(\hat{BAP}=\hat{BCF}\left(cmt\right)\)

\(\Rightarrow\Delta ABK\sim\Delta CBF\left(g.g\right)\Rightarrow\dfrac{AK}{CF}=\dfrac{AB}{CB}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{CF}{CB}\left(1\right)\)

Ta cũng dễ chứng minh được \(\Delta ABK\sim\Delta CPK\left(g.g\right)\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{CP}=\dfrac{AB}{CQ}\left(CP=CQ\left(cmt\right)\right)\)

\(\Rightarrow\dfrac{AK}{AB}=\dfrac{CK}{CQ}\left(2\right)\).

Từ (1) và (2), suy ra: \(\dfrac{CF}{CB}=\dfrac{CK}{CQ}\Leftrightarrow\dfrac{CQ}{CB}=\dfrac{CK}{CF}\).

Xét \(\Delta CQK,\Delta CBF:\left\{{}\begin{matrix}\hat{C}\text{ chung}\\\dfrac{CQ}{CB}=\dfrac{CK}{CB}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CQK\sim\Delta CBF\left(c.g.c\right)\Rightarrow\hat{CKQ}=\hat{CFB}\).

Lại có: \(\hat{CKQ}+\hat{QKB}=180^o\) (kề bù), suy ra \(\hat{CFB}+\hat{QKB}=180^o\).

Đây là hai góc đối nhau nên tứ giác \(BKQF\) nội tiếp được một đường tròn (đpcm).

Chứng minh tương tự như trên thì ta cũng suy ra được tứ giác \(KQEC\) nội tiếp được một đường tròn.

 

(b) Từ câu a, \(KQEC\) là tứ giác nội tiếp nên \(\hat{QEA}=\hat{QKC}\) (cùng bù với \(\hat{QEC}\)); \(BFQK\) là tứ giác nội tiếp nên \(\hat{QFB}=\hat{QKC}\) (cùng bù với \(\hat{QKB}\)).

Suy ra: \(\hat{QFB}=\hat{QEA}\).

Lại có: \(\hat{QFB}+\hat{QFA}=180^o\) (kề bù) nên \(\hat{QEA}+\hat{QFA}=180^o\)

Đây là hai góc đối nhau nên tứ giác \(AFQE\) nội tiếp (đpcm).

 

(c) \(L\in\left(AEF\right)\) mà tứ giác \(AFQE\) nội tiếp (cmt), suy ra \(Q\in\left(AEF\right)\), hay tứ giác \(AFLQ\) nội tiếp.

Suy ra: \(\hat{FAL}=\hat{FQL}\) (hai góc cùng nhìn một cạnh), hay \(\hat{BAP}=\hat{FQL}\).

Mà ở câu a, \(\hat{BAP}=\hat{BCF}\Rightarrow\hat{BAP}=\hat{KCQ}\).

\(\Rightarrow\hat{KCQ}=\hat{FQL}\).

Hai góc này ở vị trí đồng vị nên \(QL\left|\right|CK\), mà \(CK\perp PQ\) (\(BC\) là đường trung trực của \(PQ\) (chứng minh ở a))

Do đó, \(QL\perp PQ\), tức \(\hat{PQL}=90^o\left(đpcm\right)\)

 

19 tháng 1

2 tháng 12 2016

Ta có: AC = 5 
Gọi bán kính đường tròn nội tiếp là r 
Ta có:
S(ABC) =S(OAB) + S(OAC) +S(OBC) (1) 
S(OAB) = r*AB/2 
S(OAC) = r*AC/2 
S(OBC) = r*BC/2 
=> S(OAB) + S(OAC) +S(OBC) = r* (AB+BC+CA)/2 = 6r (2) 
Mặt khác; S(ABC) = AB.AC/2 = 6 (3) 

Từ (1), (2), (3) :
=> 6r = 6 => r = 1.

Ủng hộ mk nha!

4 tháng 1 2019

cảm ơn bạn nhiều