Cho A=10 mũ 2011+ 10 mũ 2010 + 10 mũ 2009 + 10 mũ 2008+8
a. Cmr A chia hết cho 24
b. Cmr A ko phải là số chính phương
Giải chi tiết ra giúp mk nha giải ra bằng số ko giải bằng chữ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng các chữ số của A là 12 nên A chia hết cho 3
3 chữ số tận cùng của là 008, 3 chữ số tận cùng tạo thành số chia hết cho 8
Nên A chia hết cho 8
Mà (3;8)=1 => A chia hết cho 3.8=24
b) Số chính phương ko có tận cùng là 8 nên A ko là SCP
a)nếu 200910+9=200919
vậy 200919>201010suy ra A>B
nếu 36:32=4 và 47:43 =47-3=44
vậy 4<44 suy ra A<B
chúc bn
hok tốt
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
\(10^{2011}+5⋮3\)Vì :
\(10^{2011}+5=100000..00000+5\left(\text{có 2011 số 0}\right)\)
Vì dấu hiệu chia hết cho 3 là Tổng các chữ số chia hết cho 3.
Nên ta có \(1+0+0+0+...+0+5=6⋮3\)
=> 102011 + 5 chia hết cho 3
Xét:\(10:3=3\left(dư1\right)\)
\(10^2:3=33\left(dư1\right)\)
\(10^3:3=333\left(dư1\right)\)
....................................................
\(\Rightarrow10^{2011}:3\left(dư1\right)\)
\(\Rightarrow10^{2011}=3k+1\)
\(\Rightarrow10^{2011}+5=3k+1+5=3k+6⋮3\)
\(\Rightarrow10^{2011}+5⋮3\)
đúng nha bạn@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Những số chia hết cho 10 đều có chữ số tận cùng là số 0
\(21^{20}=21\cdot21\cdot...\cdot21\) (20 số 21)
=> \(21^{20}\)có chữ số tận cùng là 1
\(11^{10}=11\cdot11\cdot...\cdot11\)(10 số 11)
=> \(11^{10}\)có chữ số tận cùng là 1
=> \(21^{20}-11^{10}\) sẽ có chữ số tận cùng là 0
=> \(21^{20}-11^{10}\)chia hết cho 10
a) Ta có : A=102012+102011+102010+102009+9 có tổng chữ số là : 1+0+1+0+1+0+1+0+8=12
=> Tổng các chữ số của A là 12 nên A chia hết cho 3
Ta có 3 chữ số tận cùng của A là 008
Vì 008 chia hết cho 8 nên A chia hết cho 8
Mà (3,8)=1
=> A chia hết cho 3.8=24
Vậy A chia hết cho 24.
b) Ta thấy : chữ số tận cùng của A là 8
Mà không có số chính phương nào có chữ số tận cùng là 8
=> A không là số chính phương
Vậy A không là số chính phương.
b) Ta có: A = \(10^{2012}+10^{2011}+10^{2010}+10^{2009}+8\) \(=\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+8=\left(.....8\right)\)
\(\Rightarrow\) A có tận cùng là 8
Mà số chính phương không có tận cùng là 8 nên A không phải số chính phương (đpcm)