K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

a) Ta có: AM//BD

=> \(\dfrac{AM}{BD}=\dfrac{AF}{FB}\)

Xét tam giác ACB có CF là đường phân giác góc C

=> \(\dfrac{AC}{BC}=\dfrac{AF}{BF}\) (theo t/chất đường phân giác trong tam giác)

=> \(\dfrac{AM}{BD}=\dfrac{AC}{BC}\)

 

2 tháng 3 2021

Câu b đợi mình nháp xíu nha.

15 tháng 11 2017

a. Xét tam giác EAD và tam giác FAD có 

AED=AFD=90*

EAD=FAD(gt)

AD chung

=> tam giác EAD= tam giác FAD(ch-gn)

=> DE=DF( 2 cạnh t.ứ) và EDA=FDA( 2 góc t,ứ)

Ta có EDA=FDA=30*=>EDF=EDA+FDA=30*+30*=60*

b. Tam giác EAD=tam giác FAD(ch-gn=>AE=AF

Mà KE=FI => AE+EK=AF+FI => AK=AI

Xét tam giác AKD và tam giác AID

AK=AI; KAD=IAK; AD chung

=> tam giác AKD= tam giác AID(cgc)

=> DK=DI

c. Ta có BAC+CAM=180*( kề bù)

=> 120* + CAM=180* => CAM= 60*

Lại có AD//MC=> DAC=ACM= 1/2BAC= 60*

Xét tam giác ACM có ACM= CAM=60*=> tam giác ACM đều => ACM=CAM=AMC=60*

16 tháng 6 2018

A B C D E F M a b

a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF

Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300

Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600

Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.

b) Dễ thấy ^CAM=1800-^BAC=600.

CM // AD => ^ACM=^DAC=1/2^BAC=600

Từ đó suy ra \(\Delta\)ACM là tam giác đều.

c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF

=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD

=> a - b = 1/2AD => AD= 2(a - b).

Vậy .........

27 tháng 11 2017

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều