2/cos 1010 + 2/căn3nhâncos610
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)
Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)
\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)
\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)
Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm
\(S=1010+1010^2+1010^3+...+1010^{1011}\)
Suy ra \(1010.S=1010^2+1010^3+1010^4+....+1010^{1012}\)
Nên\(1010.S-S=1010^{1012}-1010\)hay\(1009.S=1010^{1012}-1010\)
Khi đó \(S=\frac{1010^{1012}-1010}{1009}\)
S=1011+1010^2+1010^3+...+1010^1011
S=1+1010+1010^2+1010^3+...+1010^1011
1010.S=1010+1010^2+1010^3+1010^4+...+1010^1012
1010 S - S=1010^1012-1
1009 S=1010^1012-1
S=(1010^1012-1):1009
a) 2 x ( 1010 + 110 )
= 2 x 1120 =2240
b) 2 x ( 1001 - 110 )
= 2 x 890 = 1780
c) 2 x ( 1011 x101 )
=2 x 102111 =204222